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Outline

• Graphical Dataflow Programming 

• LabVIEW – Introduction and Demo

• LabVIEW Compiler (under the hood)

• Multicore Programming in LabVIEW

• Polyhedral Compilation of Graphical Dataflow 

Programs
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Evolution of Programming Languages

Binary

Assembly

Text 
Based: 
Fortran, 
Pascal

C / C++

C#, Java, 
Python, 

Ruby LabVIEW
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Graphical Dataflow v/s Imperative Programs

Imperative Programming

• Computation specified as sequence of statements 

• Each statement changes the program state

// s = ut + 0.5a*t*t

double displacement_in_time_t(double time, 

double initial_velocity, 

double acceleration) {

double displacement = initial_velocity * time;

displacement += 0.5 * acceleration * time * time;

return displacement;

}
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Graphical Dataflow v/s Imperative Programs

Imperative Programming

• Computation specified as sequence of statements 

• Each statement changes the program state

// s = ut + 0.5a*t*t

double displacement_in_time_t(double time, 

double initial_velocity, 

double acceleration) {

double displacement = initial_velocity * time;

displacement += 0.5 * acceleration * time * time;

return displacement;

}

Graphical dataflow programming

• No notion of statements 

• No fixed relative execution order

• Referential transparency
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Dataflow Execution Semantics

• Interconnected set of nodes that represent specific computations

• Nodes consume input data to produce output data

• Nodes ready to fired as soon as data is available on all inputs
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Inherent Parallelism Of Dataflow Programs

Partially ordered program specification

• Sequentiality enforced through data dependences

Possible orderings of node 

execution:

Strictly Sequential
• Multiply <  Square < TernaryMultiply < Add

• Square < TernaryMultiply < Multiply < Add

• Square < Multiply < TernaryMultiply < Add
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Inherent Parallelism Of Dataflow Programs

Partially ordered program specification

• Sequentiality enforced through data dependences

• Compiler determines the granularity of parallelism

Possible orderings of node 

execution:

Strictly Sequential
• Multiply <  Square < TernaryMultiply < Add

• Square < TernaryMultiply < Multiply < Add

• Square < Multiply < TernaryMultiply < Add

Exploiting inherent parallelism
• (Multiply || Square)  < TernaryMultiply < Add

• (Multiply || (Square < TernaryMultiply)) < Add

• Square < (Multiply || TernaryMultiply) < Add
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Memory Allocation in Graphical Dataflow

• Valid to substitute expression with its value 
• at any point in program execution

Programmer’s perspective of 

memory allocation

Each new output value in a 

new memory location
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Memory Allocation in Graphical Dataflow

• Valid to substitute expression with its value 
• at any point in program execution

• Copy avoidance strategies to reduce memory overhead

• Output data is inplace to input data wherever possible

Programmer’s perspective of 

memory allocation

Each new output value in a 

new memory location

After copy-avoidance, only 3

memory allocations are needed
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Copy-avoidance and Execution Schedule

• TernaryMultiply < Multiply

• Destructive update of MEM2

• Pending read of MEM2

• Cannot exploit parallelism
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Copy-avoidance and Execution Schedule

• TernaryMultiply < Multiply

• Destructive update of MEM2

• Pending read of MEM2

• Cannot exploit parallelism

• No destructive update of MEM2

• TernaryMultiply < Multiply

• TernaryMultiply || Multiply

• TernaryMultiply > Multiply

Strong interplay between copy-avoidance, clumping and scheduling
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Outline

• Graphical Dataflow Programming 

• LabVIEW – Introduction and Demo

• LabVIEW Compiler (under the hood)

• Multicore Programming in LabVIEW

• Polyhedral Compilation of Graphical Dataflow 

Programs
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LabVIEW

• Platform for graphical dataflow programming 
• Owned by National Instruments

• G dataflow programming language

• Editor, compiler, runtime and debugger

• Supported on Windows, Linux, Mac

• Power PC, Intel architectures, FPGA

Measurement
Control I/O

Deployable Math
and Analysis

User Interface Technology Integration
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Scalable: From Kindergarten to Rocket Science
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LabVIEW Program

• LabVIEW program
• Front Panel + Block Diagram
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G Programming Language

• Data types

• Built-in types: integer and floating point types, Boolean, string etc

• Aggregate types: arrays, clusters, classes

• Data manipulation through built-in collection of primitives
• Numeric palette (add, multiply, divide, subtract etc)

• Array palette (Build array, Index array, concatenate array, decimate array etc)
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G Programming Language – Control Constructs

• Case Structure

• One or more diagrams (cases)

• Value wired to selector terminal for switching

• Boolean, string, integer, enumerated type
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G Programming Language – Control Constructs

Loop structures

• While loop

• Timed loop

• For loop

• LoopMax and LoopIndex boundary nodes

• Loop carried data through shift registers

• Tunnels (with optional indexing)

Shift registers to propagate 

data across iterations

Unindexed tunnels propagate 
same data every iteration

Indexed tunnels 
• Array auto-indexing
• Auto- accumulate iteration outputs
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• LabVIEW – Introduction and Demo

• LabVIEW Compiler (under the hood)

• Multicore Programming in LabVIEW

• Polyhedral Compilation of Graphical Dataflow 

Programs
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LabVIEW Compiler
mov         byte ptr [esi+29h],0 

mov eax,dword ptr [esi+18h] 

mov ebp,dword ptr [esi+14h] 

mov dword ptr [esi+0Ch],eax

cmp byte ptr [esi+2Ah],1 

je 0ABFFE0F 

mov eax,dword ptr [esi+1Ch] 

mov eax,dword ptr [eax+14h] 

test        eax,eax

je 0ABFFCEF 

cmp byte ptr [eax+2Ah],1 

jne 0ABFFCEF 

jmp 0ABFFE0F 

mov ecx,dword ptr [ebp+44h] 

xor eax,eax

mov edx,1 

lock cmpxchg dword ptr [ecx],edx

test        eax,eax

jne 0ABFFCEF 

mov eax,dword ptr [esi+1Ch] 

lea         ecx,[ebp+4Ch] 

mov dword ptr [eax+10h],ecx

mov dword ptr [ebp+68h],eax

mov dword ptr [ebp+48h],esi

cmp dword ptr [eax+14h],0 

jne 0ABFFD90 

mov dword ptr [eax+14h],esi

mov byte ptr [ebp+1Eh],1 

cmp dword ptr [esi+30h],2 

je 0ABFFE39 

mov byte ptr [ebp+1Bh],1 

mov esi,dword ptr [ebp+360h] 

mov esi,dword ptr [esi] 

mov dword ptr [ebp+37Ch],esi

inc dword ptr [ebp+37Ch] 

mov esi,dword ptr [ebp+48h] 

cmp byte ptr [esi+3Dh],1 

mov eax,dword ptr [ebp+68h] 

je 0ABFFE09 

cmp dword ptr [eax+28h],0 

jne 0ABFFE1F 

mov dword ptr [ebp+48h],0 

mov dword ptr [eax+10h],esi

mov byte ptr [ebp+1Eh],0 

mov ecx,dword ptr [ebp+44h] 

mov dword ptr [ecx],0 

cmp dword ptr [eax+14h],esi

jne 0ABFFE0F 

mov dword ptr [eax+14h],0 

cmp         byte ptr [esi+29h],5 

jne 0ABFFE0F 

mov         dword ptr [esi+29h],2 

xor eax,eax

jmp 0ABFFD13 

mov dword ptr [esi+1Ch],eax

mov dword ptr [eax+10h],esi

mov edx,dword ptr [esi+8] 

mov ecx,dword ptr [esi+0Ch] 

mov eax,esi

add         esp,8 

pop         esi

mov ebp,edx

jmp ecx

add         ebp,3Ch 

mov dword ptr [esp],ebp

call        SubrVIExit (24D6450h) 

test        eax,eax

je 0ABFFE02 

mov esi,eax

jmp 0ABFFE0F 

mov byte ptr [ebp+1Bh],0 

jmp 0ABFFD90

Compiler
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LabVIEW Compiler

• Abstracts the complexities of programming
o Memory management

o Thread allocation

o Language syntax

• Edit-time semantic analysis

• Compile on Load/Run/Save
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Optimizing the LabVIEW Compiler

DataFlow Intermediate Representation (DFIR)

• High-level graph-based representation

• Preserves execution semantics, dataflow, 

parallelism, and structure hierarchy

• Developed internally at NI

Block Diagram

Target Machine Code

Transforms

DFIR
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Optimizing the LabVIEW Compiler

DataFlow Intermediate Representation (DFIR)

• High-level graph-based representation

• Preserves execution semantics, dataflow, 

parallelism, and structure hierarchy

• Developed internally at NI

Low-Level Virtual Machine (LLVM)

• Low-level sequential representation

• Knowledge of target machine characteristics

• 3rd party, Open Source

Block Diagram

Target Machine Code

Transforms

DFIR

LLVM

Transforms
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What does DFIR look like?
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DFIR Decomposition Transforms

• Lowering high-level nodes and constructs 

• equivalent lower-level nodes

Feedback Node Decomposition
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DFIR Optimization Transforms

Common Sub-expression Elimination

?



28ni.com

DFIR Optimization Transforms

Common Sub-expression Elimination
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DFIR Optimization Transforms

Common Sub-expression Elimination

Unreachable Code Elimination
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DFIR Optimization Transforms

Loop Invariant Code Motion

?
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DFIR Optimization Transforms

Loop Invariant Code Motion
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DFIR Optimization Transforms

Loop Invariant Code Motion

Constant folding
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DFIR Optimization Transforms

Loop Invariant Code Motion

Constant folding

Dead Code Elimination
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• LabVIEW – Introduction and Demo

• LabVIEW Compiler (under the hood)
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Programs
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Task Parallelism

• Divide application into independent tasks

• Tasks mapped to separate processors
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Task Parallelism

• Divide application into independent tasks

• Tasks mapped to separate processors

• Traditional text-based languages have sequential syntax

• Difficult to visualize and organize in parallel form

• Parallelism is more evident in graphical dataflow programs

• Tasks as parallel sections of code on LabVIEW block diagram

• No need to manage threads or their synchronization
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Task Parallelism – An Example

• Independent data acquisition tasks

• Can be executed concurrently on  

multicore processor 
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Task Parallelism – An Example With Pitfalls

• Independent data acquisition tasks

• Can be executed concurrently on  

multicore processor 

• Tasks not truly parallel

• Digital task depends on analog 

task

To maximize task parallelism, avoid unnecessary resource sharing
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Multi-threaded LabVIEW Execution Environment

• LabVIEW compiler identifies clumps 

• Parallel sections of code on block diagram
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Multi-threaded LabVIEW Execution Environment

• LabVIEW compiler identifies clumps 

• Parallel sections of code on block diagram

• LabVIEW runtime maintains pool of execution threads

• Pool size at least as much as number of cores

• During sequential run, some threads are asleep

• Idle threads get woken up as degree of parallelism increases
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Multi-threaded LabVIEW Execution Environment

• LabVIEW compiler identifies clumps 

• Parallel sections of code on block diagram

• LabVIEW runtime maintains pool of execution threads

• Pool size at least as much as number of cores

• During sequential run, some threads are asleep

• Idle threads get woken up as degree of parallelism increases

• Thread co-operatively multitasks across clumps

• Clumps yield periodically to scheduler 

• Waiting clumps get chance to run
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Data Parallelism

• Split large dataset into smaller chunks 

• Operate on smaller chunks in parallel

• Individual results are combined to obtain final result
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Data Parallelism

• Split large dataset into smaller chunks 

• Operate on smaller chunks in parallel

• Individual results are combined to obtain final result

• No data parallelism

• Inefficient use of resources

• Large dataset broken up into 4 subsets

• Each core is engaged

• Improved execution speed
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Data Parallelism in LabVIEW

• Standard matmul operation in LabVIEW

• No data parallelism being exploited

• Long execution time for large datasets
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Data Parallelism in LabVIEW

• Standard matmul operation in LabVIEW

• No data parallelism being exploited

• Long execution time for large datasets

• Data parallel matmul

• Matrix1 divided into two halves

• Concurrent matmul with each half

• Individual results combined
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Data Parallelism in LabVIEW

• Standard matmul operation in LabVIEW

• No data parallelism being exploited

• Long execution time for large datasets

• Data parallel matmul

• Matrix1 divided into two halves

• Concurrent matmul with each half

• Individual results combined
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Data Parallelism in the Real World

• Matrix-vector in real-time HPC 

application e.g. control system

• Sensor measurements as vector input 

on per-loop basis

• Matrix-vector result to control 

actuators

• Matrix-vector computation on 8 cores
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Data Parallelism in the Real World

• Matrix-vector in real-time HPC 

application e.g. control system

• Sensor measurements as vector input 

on per-loop basis

• Matrix-vector result to control 

actuators

• Matrix-vector computation on 8 cores

LabVIEW program for plasma control in ASDEX tokamak

• Germany’s most advanced nuclear fusion platform

• Compute-intensive matrix operations on oct-core server

• Real-time constraint of maintaining a 1ms control loop

“in first design stage...with LabVIEW, we obtained a 20X processing speedup on an 

octal core processor machine over a single-core processor, while reaching our 1 ms

control loop requirement”  -- Louis Giannone, lead researcher
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Structured Grids

Near-neighbor dependences in 

time-iterated stencil computations

for(t = 1; t < T; ++t)
for(i = 1; i < N; ++i)

for(j = 1; j < N; ++j)
grid[t][i][j] = f(grid[t-1][i-1][j],

grid[t-1][i+1][j],
grid[t-1][i][j-1],
grid[t-1][i][j+1]);
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Structured Grids

Near-neighbor dependences in 

time-iterated stencil computations

• Split into sub-grids 

• Compute them 

independently

for(t = 1; t < T; ++t)
for(i = 1; i < N; ++i)

for(j = 1; j < N; ++j)
grid[t][i][j] = f(grid[t-1][i-1][j],

grid[t-1][i+1][j],
grid[t-1][i][j-1],
grid[t-1][i][j+1]);
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Structured Grids

Near-neighbor dependences in 

time-iterated stencil computations

• Split into sub-grids 

• Compute them 

independently

• Each icon mapped to 

separate core

• Feedback nodes 

represent data 

exchange

for(t = 1; t < T; ++t)
for(i = 1; i < N; ++i)

for(j = 1; j < N; ++j)
grid[t][i][j] = f(grid[t-1][i-1][j],

grid[t-1][i+1][j],
grid[t-1][i][j-1],
grid[t-1][i][j+1]);
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Pipelining

• Divide inherently serial task into concrete stages

• Execute stages in assembly-line fashion 

• No pipelining
• Poor throughput
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Pipelining

• Divide inherently serial task into concrete stages

• Execute stages in assembly-line fashion 

• No pipelining
• Poor throughput

• Pipelined execution
• Improved throughput
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Pipelining in LabVIEW

• Sequential task in a loop, with 4 stages

• Typical of streaming applications

• FFTs manipulated one step at a time
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Pipelining in LabVIEW

• Sequential task in a loop, with 4 stages

• Typical of streaming applications

• FFTs manipulated one step at a time

• Feedback nodes to 

separate pipeline stages

• Pipelined execution 

through shift registers

• Each stage can be 

mapped to a separate 

core
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Pipelining – Important Concerns

Pipeline stages must be 

well-balanced

LabVIEW built-in timing 

primitives for benchmarking
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Pipelining – Important Concerns

Pipeline stages must be 

well-balanced

LabVIEW built-in timing 

primitives for benchmarking

Avoid large data transfer 

between stages, across cores

• Cores may not share cache

• Data size could exceed cache size
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Parallel For Loop for Iteration Parallelism

• Concurrent execution iterations of a for loop in multiple threads

• Greater CPU utilization

Auto-parallelization of for loop
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Parallel For Loop for Iteration Parallelism

• Concurrent execution iterations of a for loop in multiple threads

• Greater CPU utilization

Auto-parallelization of for loop

• Compiler generate multiple 

parallel loop instances

• Each parallel loop instance 

represents independently 

schedulable clump
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Configuring Iteration Parallelism
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Configuring Iteration Parallelism

Automatic iteration partitioning

• Initial chunks of iterations are large

(reduces scheduling overhead)

• Chunk size gradually decreases

(better load balancing)
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Configuring Iteration Parallelism

Automatic iteration partitioning

• Initial chunks of iterations are large

(reduces scheduling overhead)

• Chunk size gradually decreases

(better load balancing)

Customized iteration partitioning

• Wire in chunk size or array of chunk 

sizes to the C terminal
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Iteration Parallelism – When to Use?

Loop must produce same result regardless of order of execution of iterations

Data carried across iterations

through shift registers
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Iteration Parallelism – When to Use?

Loop must produce same result regardless of order of execution of iterations

Data carried across iterations

through shift registers

for (int i = 1; i < N; ++i)
for (int j = 1; j < N; ++j)

a[i][j] = a[i-1][j] + 1;

Can any loop be parallelized here?
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Iteration Parallelism – When to Use?

Loop must produce same result regardless of order of execution of iterations

Data carried across iterations

through shift registers

One iteration should not depend on 

results of  another

• Writing A[i-1] in iteration i-1

• Reading A[i-1] in iteration (i )

LabVIEW automatically does 

cross-iteration dependence analysis
• VI breaks if dependences are violated

for (int i = 1; i < N; ++i)
for (int j = 1; j < N; ++i)

a[i][j] = a[i-1][j] + 1;

Can any loop be parallelized here?
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Outline

• Graphical Dataflow Programming 

• LabVIEW – Introduction and Demo

• LabVIEW Compiler (under the hood)

• Multicore Programming in LabVIEW

• Polyhedral Compilation of Graphical Dataflow 

Programs
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Parallel For Loop Limitations

None of these loops 
can be parallelized

Loop-nest is inner parallel
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Parallel For Loop Limitations

None of these loops 
can be parallelized

Loop-nest is inner parallel
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Parallel For Loop Limitations

Loop skewing exposes the hidden parallelism

None of these loops 
can be parallelized

Loop-nest is inner parallel
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Polyhedral Model - A Short Overview

• Abstract mathematical representation

• Convenient to reason about complex program transformations

• Static Control Parts (SCoP), typically  affine loop-nests

• e.g. stencil computations, linear algebra kernels
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• Abstract mathematical representation

• Convenient to reason about complex program transformations

• Static Control Parts (SCoP), typically  affine loop-nests

• e.g. stencil computations, linear algebra kernels



77ni.com

Polyhedral Model - A Short Overview

• Dynamic instances of a statement

• Integer points inside a polyhedron

• Iteration domain as conjunction of affine inequalities involving 

surrounding loop iterators and global parameters

Figure. Polyhedral representation of a loop-nest in geometrical and linear 

algebraic  form
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Polyhedral model - a brief overview

• A multi-dimensional affine schedule

• Specifies order in which the integer points need to be scanned

• Maps each integer point to multi-dimensional logical timestamp 

(think...hours, minutes, seconds)

Schedule of the statement 

instances is given by

theta(i, j) = (i, j)
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Polyhedral model - a brief overview

• Array access information also encoded, must be affine

• Polyhedral optimizer/parallelizer

• Analyzes the dependences

• Pick schedule without violating dependences using a cost model

• PLuTo: minimize dependence distances in transformed space
o Optimizes parallelism and locality simultaneously
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Polyhedral model - a brief overview

• Array access information also encoded, must be affine

• Polyhedral optimizer/parallelizer

• Analyzes the dependences

• Pick schedule without violating dependences using a cost model

• PLuTo: minimize dependence distances in transformed space
o Optimizes parallelism and locality simultaneously

Schedule of the statement 

instances is given by

theta(i, j) = (i, j)

New schedule is

theta( i, j) = (i+j, j)
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Polyhedral compilation - some related work

Polyhedral compilation of imperative programs

• Extract polyhedral representation e.g. Clan (Cedric Bastoul et al)

• Polyhedral transformation - PLuTo (Uday Bondhugula et al)

• Generated transformed code e.g. CLooG (Cedric Bastoul et al)

• Polyhedral compilation in production compilers e.g.  IBM-XL, 

RSTREAM

Polyhedral compilation of graphical dataflow programs?

• Polyhedral extraction from dataflow programs

• Synthesizing dataflow programs from polyhedral representation
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Extracting Polyhedral Representation

• Identifying statement analogues

• Relating array accesses to a particular array allocation

• Execution schedule depends on the actual inplaceness

strategy
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Static Control Dataflow Diagram (SCoD)

• Canonical form of dataflow program

• Inplaceness patterns that facilitate polyhedral extraction

• no new memory allocation  for array data  inside the SCoD

• Similarities with SCoP

• All computations nodes are functional

• Maximal dataflow diagram with countable loop constructs

• Loop bounds and conditional depend on parameters that are 

invariant for the diagram
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SCoD – Destructive Updates

• At most one destructive update of array data
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Compute-dags as Statement Analogues

• Schedule of nodes exists such that no array copy is needed

• hint: schedule all array reads ahead of the array write

• SCoD as sequence of computations that over-write incoming 

array data

• Compute-dags can be identified to serve as statement 

analogues
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Compute-dags as Statement Analogues

• A path exists from all nodes in the compute-dag to the root
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Iteration Domain of Statement Analogues
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Determining Schedule of Statement 

Analogues
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Analyzing Accesses of Statement Analogues
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The PolyGLoT framework
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Experimental evaluation

• Implemented benchmarks in Polybench suite in LabVIEW

• PolyGLoT as a separate transform pass in LV desktop compiler

• uses Pluto as the polyhedral optimizer (locality transformations + 

parallelization)

• Dual-socket Intel(R) Xeon(R) CPU E5606 (2.13GHz) machine with 

8 cores, 24GB RAM, 8MB L3 cache
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Experimental evaluation
• lv-parallel - LabVIEW production compiler, with parallelization

• pg-par - LabVIEW compiler with PolyGLoT enabled for auto-

parallelization

• pg-loc-par - LabVIEW compiler with PolyGLoT enabled for auto-

parallelization + locality optimization

• mean speed-up of 2.30× with pg-loc-par over lv-parallel
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Summary

• Graphical dataflow programming 

• Simple, intuitive and accessible to novice programmers

• Well-suited for exploiting and expressing parallelism

• Used by scientists and engineers in various domains

• Optimizing and parallelizing LabVIEW compiler

• Clumps of independently schedulable sections of code

• Task parallelism, data parallelism, pipelining etc

• Parallel for loop for cross-iteration parallelism

• Polyhedral model for complex program transformations
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Thanks!

Questions?


