
1ni.com

A Graphical Dataflow Programming Approach

To

High Performance Computing

Somashekaracharya G. Bhaskaracharya

National Instruments

Bangalore

2ni.com

Outline

• Graphical Dataflow Programming

• LabVIEW – Introduction and Demo

• LabVIEW Compiler (under the hood)

• Multicore Programming in LabVIEW

• Polyhedral Compilation of Graphical Dataflow

Programs

3ni.com

Evolution of Programming Languages

Binary

Assembly

Text
Based:
Fortran,
Pascal

C / C++

C#, Java,
Python,

Ruby LabVIEW

4ni.com

Graphical Dataflow v/s Imperative Programs

Imperative Programming

• Computation specified as sequence of statements

• Each statement changes the program state

// s = ut + 0.5a*t*t

double displacement_in_time_t(double time,

double initial_velocity,

double acceleration) {

double displacement = initial_velocity * time;

displacement += 0.5 * acceleration * time * time;

return displacement;

}

5ni.com

Graphical Dataflow v/s Imperative Programs

Imperative Programming

• Computation specified as sequence of statements

• Each statement changes the program state

// s = ut + 0.5a*t*t

double displacement_in_time_t(double time,

double initial_velocity,

double acceleration) {

double displacement = initial_velocity * time;

displacement += 0.5 * acceleration * time * time;

return displacement;

}

Graphical dataflow programming

• No notion of statements

• No fixed relative execution order

• Referential transparency

6ni.com

Dataflow Execution Semantics

• Interconnected set of nodes that represent specific computations

• Nodes consume input data to produce output data

• Nodes ready to fired as soon as data is available on all inputs

7ni.com

Inherent Parallelism Of Dataflow Programs

Partially ordered program specification

• Sequentiality enforced through data dependences

Possible orderings of node

execution:

Strictly Sequential
• Multiply < Square < TernaryMultiply < Add

• Square < TernaryMultiply < Multiply < Add

• Square < Multiply < TernaryMultiply < Add

8ni.com

Inherent Parallelism Of Dataflow Programs

Partially ordered program specification

• Sequentiality enforced through data dependences

• Compiler determines the granularity of parallelism

Possible orderings of node

execution:

Strictly Sequential
• Multiply < Square < TernaryMultiply < Add

• Square < TernaryMultiply < Multiply < Add

• Square < Multiply < TernaryMultiply < Add

Exploiting inherent parallelism
• (Multiply || Square) < TernaryMultiply < Add

• (Multiply || (Square < TernaryMultiply)) < Add

• Square < (Multiply || TernaryMultiply) < Add

9ni.com

Memory Allocation in Graphical Dataflow

• Valid to substitute expression with its value
• at any point in program execution

Programmer’s perspective of

memory allocation

Each new output value in a

new memory location

10ni.com

Memory Allocation in Graphical Dataflow

• Valid to substitute expression with its value
• at any point in program execution

• Copy avoidance strategies to reduce memory overhead

• Output data is inplace to input data wherever possible

Programmer’s perspective of

memory allocation

Each new output value in a

new memory location

After copy-avoidance, only 3

memory allocations are needed

11ni.com

Copy-avoidance and Execution Schedule

• TernaryMultiply < Multiply

• Destructive update of MEM2

• Pending read of MEM2

• Cannot exploit parallelism

12ni.com

Copy-avoidance and Execution Schedule

• TernaryMultiply < Multiply

• Destructive update of MEM2

• Pending read of MEM2

• Cannot exploit parallelism

• No destructive update of MEM2

• TernaryMultiply < Multiply

• TernaryMultiply || Multiply

• TernaryMultiply > Multiply

Strong interplay between copy-avoidance, clumping and scheduling

13ni.com

Outline

• Graphical Dataflow Programming

• LabVIEW – Introduction and Demo

• LabVIEW Compiler (under the hood)

• Multicore Programming in LabVIEW

• Polyhedral Compilation of Graphical Dataflow

Programs

14ni.com

LabVIEW

• Platform for graphical dataflow programming
• Owned by National Instruments

• G dataflow programming language

• Editor, compiler, runtime and debugger

• Supported on Windows, Linux, Mac

• Power PC, Intel architectures, FPGA

Measurement
Control I/O

Deployable Math
and Analysis

User Interface Technology Integration

15ni.com

Scalable: From Kindergarten to Rocket Science

16ni.com

LabVIEW Program

• LabVIEW program
• Front Panel + Block Diagram

17ni.com

G Programming Language

• Data types

• Built-in types: integer and floating point types, Boolean, string etc

• Aggregate types: arrays, clusters, classes

• Data manipulation through built-in collection of primitives
• Numeric palette (add, multiply, divide, subtract etc)

• Array palette (Build array, Index array, concatenate array, decimate array etc)

18ni.com

G Programming Language – Control Constructs

• Case Structure

• One or more diagrams (cases)

• Value wired to selector terminal for switching

• Boolean, string, integer, enumerated type

19ni.com

G Programming Language – Control Constructs

Loop structures

• While loop

• Timed loop

• For loop

• LoopMax and LoopIndex boundary nodes

• Loop carried data through shift registers

• Tunnels (with optional indexing)

Shift registers to propagate

data across iterations

Unindexed tunnels propagate
same data every iteration

Indexed tunnels
• Array auto-indexing
• Auto- accumulate iteration outputs

20ni.com

Outline

• Graphical Dataflow Programming

• LabVIEW – Introduction and Demo

• LabVIEW Compiler (under the hood)

• Multicore Programming in LabVIEW

• Polyhedral Compilation of Graphical Dataflow

Programs

21ni.com

LabVIEW Compiler
mov byte ptr [esi+29h],0

mov eax,dword ptr [esi+18h]

mov ebp,dword ptr [esi+14h]

mov dword ptr [esi+0Ch],eax

cmp byte ptr [esi+2Ah],1

je 0ABFFE0F

mov eax,dword ptr [esi+1Ch]

mov eax,dword ptr [eax+14h]

test eax,eax

je 0ABFFCEF

cmp byte ptr [eax+2Ah],1

jne 0ABFFCEF

jmp 0ABFFE0F

mov ecx,dword ptr [ebp+44h]

xor eax,eax

mov edx,1

lock cmpxchg dword ptr [ecx],edx

test eax,eax

jne 0ABFFCEF

mov eax,dword ptr [esi+1Ch]

lea ecx,[ebp+4Ch]

mov dword ptr [eax+10h],ecx

mov dword ptr [ebp+68h],eax

mov dword ptr [ebp+48h],esi

cmp dword ptr [eax+14h],0

jne 0ABFFD90

mov dword ptr [eax+14h],esi

mov byte ptr [ebp+1Eh],1

cmp dword ptr [esi+30h],2

je 0ABFFE39

mov byte ptr [ebp+1Bh],1

mov esi,dword ptr [ebp+360h]

mov esi,dword ptr [esi]

mov dword ptr [ebp+37Ch],esi

inc dword ptr [ebp+37Ch]

mov esi,dword ptr [ebp+48h]

cmp byte ptr [esi+3Dh],1

mov eax,dword ptr [ebp+68h]

je 0ABFFE09

cmp dword ptr [eax+28h],0

jne 0ABFFE1F

mov dword ptr [ebp+48h],0

mov dword ptr [eax+10h],esi

mov byte ptr [ebp+1Eh],0

mov ecx,dword ptr [ebp+44h]

mov dword ptr [ecx],0

cmp dword ptr [eax+14h],esi

jne 0ABFFE0F

mov dword ptr [eax+14h],0

cmp byte ptr [esi+29h],5

jne 0ABFFE0F

mov dword ptr [esi+29h],2

xor eax,eax

jmp 0ABFFD13

mov dword ptr [esi+1Ch],eax

mov dword ptr [eax+10h],esi

mov edx,dword ptr [esi+8]

mov ecx,dword ptr [esi+0Ch]

mov eax,esi

add esp,8

pop esi

mov ebp,edx

jmp ecx

add ebp,3Ch

mov dword ptr [esp],ebp

call SubrVIExit (24D6450h)

test eax,eax

je 0ABFFE02

mov esi,eax

jmp 0ABFFE0F

mov byte ptr [ebp+1Bh],0

jmp 0ABFFD90

Compiler

22ni.com

LabVIEW Compiler

• Abstracts the complexities of programming
o Memory management

o Thread allocation

o Language syntax

• Edit-time semantic analysis

• Compile on Load/Run/Save

23ni.com

Optimizing the LabVIEW Compiler

DataFlow Intermediate Representation (DFIR)

• High-level graph-based representation

• Preserves execution semantics, dataflow,

parallelism, and structure hierarchy

• Developed internally at NI

Block Diagram

Target Machine Code

Transforms

DFIR

24ni.com

Optimizing the LabVIEW Compiler

DataFlow Intermediate Representation (DFIR)

• High-level graph-based representation

• Preserves execution semantics, dataflow,

parallelism, and structure hierarchy

• Developed internally at NI

Low-Level Virtual Machine (LLVM)

• Low-level sequential representation

• Knowledge of target machine characteristics

• 3rd party, Open Source

Block Diagram

Target Machine Code

Transforms

DFIR

LLVM

Transforms

25ni.com

What does DFIR look like?

26ni.com

DFIR Decomposition Transforms

• Lowering high-level nodes and constructs

• equivalent lower-level nodes

Feedback Node Decomposition

27ni.com

DFIR Optimization Transforms

Common Sub-expression Elimination

?

28ni.com

DFIR Optimization Transforms

Common Sub-expression Elimination

29ni.com

DFIR Optimization Transforms

Common Sub-expression Elimination

Unreachable Code Elimination

30ni.com

DFIR Optimization Transforms

Loop Invariant Code Motion

?

31ni.com

DFIR Optimization Transforms

Loop Invariant Code Motion

32ni.com

DFIR Optimization Transforms

Loop Invariant Code Motion

Constant folding

33ni.com

DFIR Optimization Transforms

Loop Invariant Code Motion

Constant folding

Dead Code Elimination

34ni.com

Outline

• Graphical Dataflow Programming

• LabVIEW – Introduction and Demo

• LabVIEW Compiler (under the hood)

• Multicore Programming in LabVIEW

• Polyhedral Compilation of Graphical Dataflow

Programs

35ni.com

Task Parallelism

• Divide application into independent tasks

• Tasks mapped to separate processors

36ni.com

Task Parallelism

• Divide application into independent tasks

• Tasks mapped to separate processors

• Traditional text-based languages have sequential syntax

• Difficult to visualize and organize in parallel form

• Parallelism is more evident in graphical dataflow programs

• Tasks as parallel sections of code on LabVIEW block diagram

• No need to manage threads or their synchronization

37ni.com

Task Parallelism – An Example

• Independent data acquisition tasks

• Can be executed concurrently on

multicore processor

38ni.com

Task Parallelism – An Example With Pitfalls

• Independent data acquisition tasks

• Can be executed concurrently on

multicore processor

• Tasks not truly parallel

• Digital task depends on analog

task

To maximize task parallelism, avoid unnecessary resource sharing

39ni.com

Multi-threaded LabVIEW Execution Environment

• LabVIEW compiler identifies clumps

• Parallel sections of code on block diagram

40ni.com

Multi-threaded LabVIEW Execution Environment

• LabVIEW compiler identifies clumps

• Parallel sections of code on block diagram

• LabVIEW runtime maintains pool of execution threads

• Pool size at least as much as number of cores

• During sequential run, some threads are asleep

• Idle threads get woken up as degree of parallelism increases

41ni.com

Multi-threaded LabVIEW Execution Environment

• LabVIEW compiler identifies clumps

• Parallel sections of code on block diagram

• LabVIEW runtime maintains pool of execution threads

• Pool size at least as much as number of cores

• During sequential run, some threads are asleep

• Idle threads get woken up as degree of parallelism increases

• Thread co-operatively multitasks across clumps

• Clumps yield periodically to scheduler

• Waiting clumps get chance to run

42ni.com

Data Parallelism

• Split large dataset into smaller chunks

• Operate on smaller chunks in parallel

• Individual results are combined to obtain final result

43ni.com

Data Parallelism

• Split large dataset into smaller chunks

• Operate on smaller chunks in parallel

• Individual results are combined to obtain final result

• No data parallelism

• Inefficient use of resources

44ni.com

Data Parallelism

• Split large dataset into smaller chunks

• Operate on smaller chunks in parallel

• Individual results are combined to obtain final result

• No data parallelism

• Inefficient use of resources

• Large dataset broken up into 4 subsets

• Each core is engaged

• Improved execution speed

45ni.com

Data Parallelism in LabVIEW

• Standard matmul operation in LabVIEW

• No data parallelism being exploited

• Long execution time for large datasets

46ni.com

Data Parallelism in LabVIEW

• Standard matmul operation in LabVIEW

• No data parallelism being exploited

• Long execution time for large datasets

• Data parallel matmul

• Matrix1 divided into two halves

• Concurrent matmul with each half

• Individual results combined

47ni.com

Data Parallelism in LabVIEW

• Standard matmul operation in LabVIEW

• No data parallelism being exploited

• Long execution time for large datasets

• Data parallel matmul

• Matrix1 divided into two halves

• Concurrent matmul with each half

• Individual results combined

48ni.com

Data Parallelism in the Real World

• Matrix-vector in real-time HPC

application e.g. control system

• Sensor measurements as vector input

on per-loop basis

• Matrix-vector result to control

actuators

• Matrix-vector computation on 8 cores

49ni.com

Data Parallelism in the Real World

• Matrix-vector in real-time HPC

application e.g. control system

• Sensor measurements as vector input

on per-loop basis

• Matrix-vector result to control

actuators

• Matrix-vector computation on 8 cores

LabVIEW program for plasma control in ASDEX tokamak

• Germany’s most advanced nuclear fusion platform

• Compute-intensive matrix operations on oct-core server

• Real-time constraint of maintaining a 1ms control loop

“in first design stage...with LabVIEW, we obtained a 20X processing speedup on an

octal core processor machine over a single-core processor, while reaching our 1 ms

control loop requirement” -- Louis Giannone, lead researcher

50ni.com

Structured Grids

Near-neighbor dependences in

time-iterated stencil computations

for(t = 1; t < T; ++t)
for(i = 1; i < N; ++i)

for(j = 1; j < N; ++j)
grid[t][i][j] = f(grid[t-1][i-1][j],

grid[t-1][i+1][j],
grid[t-1][i][j-1],
grid[t-1][i][j+1]);

51ni.com

Structured Grids

Near-neighbor dependences in

time-iterated stencil computations

• Split into sub-grids

• Compute them

independently

for(t = 1; t < T; ++t)
for(i = 1; i < N; ++i)

for(j = 1; j < N; ++j)
grid[t][i][j] = f(grid[t-1][i-1][j],

grid[t-1][i+1][j],
grid[t-1][i][j-1],
grid[t-1][i][j+1]);

52ni.com

Structured Grids

Near-neighbor dependences in

time-iterated stencil computations

• Split into sub-grids

• Compute them

independently

• Each icon mapped to

separate core

• Feedback nodes

represent data

exchange

for(t = 1; t < T; ++t)
for(i = 1; i < N; ++i)

for(j = 1; j < N; ++j)
grid[t][i][j] = f(grid[t-1][i-1][j],

grid[t-1][i+1][j],
grid[t-1][i][j-1],
grid[t-1][i][j+1]);

53ni.com

Pipelining

• Divide inherently serial task into concrete stages

• Execute stages in assembly-line fashion

• No pipelining
• Poor throughput

54ni.com

Pipelining

• Divide inherently serial task into concrete stages

• Execute stages in assembly-line fashion

• No pipelining
• Poor throughput

• Pipelined execution
• Improved throughput

55ni.com

Pipelining in LabVIEW

• Sequential task in a loop, with 4 stages

• Typical of streaming applications

• FFTs manipulated one step at a time

56ni.com

Pipelining in LabVIEW

• Sequential task in a loop, with 4 stages

• Typical of streaming applications

• FFTs manipulated one step at a time

• Feedback nodes to

separate pipeline stages

57ni.com

Pipelining in LabVIEW

• Sequential task in a loop, with 4 stages

• Typical of streaming applications

• FFTs manipulated one step at a time

• Feedback nodes to

separate pipeline stages

• Pipelined execution

through shift registers

• Each stage can be

mapped to a separate

core

58ni.com

Pipelining – Important Concerns

Pipeline stages must be

well-balanced

LabVIEW built-in timing

primitives for benchmarking

59ni.com

Pipelining – Important Concerns

Pipeline stages must be

well-balanced

LabVIEW built-in timing

primitives for benchmarking

Avoid large data transfer

between stages, across cores

• Cores may not share cache

• Data size could exceed cache size

60ni.com

Parallel For Loop for Iteration Parallelism

• Concurrent execution iterations of a for loop in multiple threads

• Greater CPU utilization

Auto-parallelization of for loop

61ni.com

Parallel For Loop for Iteration Parallelism

• Concurrent execution iterations of a for loop in multiple threads

• Greater CPU utilization

Auto-parallelization of for loop

62ni.com

Parallel For Loop for Iteration Parallelism

• Concurrent execution iterations of a for loop in multiple threads

• Greater CPU utilization

Auto-parallelization of for loop

• Compiler generate multiple

parallel loop instances

• Each parallel loop instance

represents independently

schedulable clump

63ni.com

Configuring Iteration Parallelism

64ni.com

Configuring Iteration Parallelism

Automatic iteration partitioning

• Initial chunks of iterations are large

(reduces scheduling overhead)

• Chunk size gradually decreases

(better load balancing)

65ni.com

Configuring Iteration Parallelism

Automatic iteration partitioning

• Initial chunks of iterations are large

(reduces scheduling overhead)

• Chunk size gradually decreases

(better load balancing)

Customized iteration partitioning

• Wire in chunk size or array of chunk

sizes to the C terminal

66ni.com

Iteration Parallelism – When to Use?

Loop must produce same result regardless of order of execution of iterations

Data carried across iterations

through shift registers

67ni.com

Iteration Parallelism – When to Use?

Loop must produce same result regardless of order of execution of iterations

Data carried across iterations

through shift registers

for (int i = 1; i < N; ++i)
for (int j = 1; j < N; ++j)

a[i][j] = a[i-1][j] + 1;

Can any loop be parallelized here?

68ni.com

Iteration Parallelism – When to Use?

Loop must produce same result regardless of order of execution of iterations

Data carried across iterations

through shift registers

for (int i = 1; i < N; ++i)
for (int j = 1; j < N; ++i)

a[i][j] = a[i-1][j] + 1;

Can any loop be parallelized here?

69ni.com

Iteration Parallelism – When to Use?

Loop must produce same result regardless of order of execution of iterations

Data carried across iterations

through shift registers

One iteration should not depend on

results of another

• Writing A[i-1] in iteration i-1

• Reading A[i-1] in iteration (i)

LabVIEW automatically does

cross-iteration dependence analysis
• VI breaks if dependences are violated

for (int i = 1; i < N; ++i)
for (int j = 1; j < N; ++i)

a[i][j] = a[i-1][j] + 1;

Can any loop be parallelized here?

70ni.com

Outline

• Graphical Dataflow Programming

• LabVIEW – Introduction and Demo

• LabVIEW Compiler (under the hood)

• Multicore Programming in LabVIEW

• Polyhedral Compilation of Graphical Dataflow

Programs

71ni.com

Parallel For Loop Limitations

None of these loops
can be parallelized

Loop-nest is inner parallel

72ni.com

Parallel For Loop Limitations

None of these loops
can be parallelized

Loop-nest is inner parallel

73ni.com

Parallel For Loop Limitations

None of these loops
can be parallelized

Loop-nest is inner parallel

74ni.com

Parallel For Loop Limitations

Loop skewing exposes the hidden parallelism

None of these loops
can be parallelized

Loop-nest is inner parallel

75ni.com

Polyhedral Model - A Short Overview

• Abstract mathematical representation

• Convenient to reason about complex program transformations

• Static Control Parts (SCoP), typically affine loop-nests

• e.g. stencil computations, linear algebra kernels

76ni.com

Polyhedral Model - A Short Overview

• Abstract mathematical representation

• Convenient to reason about complex program transformations

• Static Control Parts (SCoP), typically affine loop-nests

• e.g. stencil computations, linear algebra kernels

77ni.com

Polyhedral Model - A Short Overview

• Dynamic instances of a statement

• Integer points inside a polyhedron

• Iteration domain as conjunction of affine inequalities involving

surrounding loop iterators and global parameters

Figure. Polyhedral representation of a loop-nest in geometrical and linear

algebraic form

78ni.com

Polyhedral model - a brief overview

• A multi-dimensional affine schedule

• Specifies order in which the integer points need to be scanned

• Maps each integer point to multi-dimensional logical timestamp

(think...hours, minutes, seconds)

Schedule of the statement

instances is given by

theta(i, j) = (i, j)

79ni.com

Polyhedral model - a brief overview

• Array access information also encoded, must be affine

• Polyhedral optimizer/parallelizer

• Analyzes the dependences

• Pick schedule without violating dependences using a cost model

• PLuTo: minimize dependence distances in transformed space
o Optimizes parallelism and locality simultaneously

80ni.com

Polyhedral model - a brief overview

• Array access information also encoded, must be affine

• Polyhedral optimizer/parallelizer

• Analyzes the dependences

• Pick schedule without violating dependences using a cost model

• PLuTo: minimize dependence distances in transformed space
o Optimizes parallelism and locality simultaneously

Schedule of the statement

instances is given by

theta(i, j) = (i, j)

81ni.com

Polyhedral model - a brief overview

• Array access information also encoded, must be affine

• Polyhedral optimizer/parallelizer

• Analyzes the dependences

• Pick schedule without violating dependences using a cost model

• PLuTo: minimize dependence distances in transformed space
o Optimizes parallelism and locality simultaneously

Schedule of the statement

instances is given by

theta(i, j) = (i, j)

New schedule is

theta(i, j) = (i+j, j)

82ni.com

Polyhedral compilation - some related work

Polyhedral compilation of imperative programs

• Extract polyhedral representation e.g. Clan (Cedric Bastoul et al)

• Polyhedral transformation - PLuTo (Uday Bondhugula et al)

• Generated transformed code e.g. CLooG (Cedric Bastoul et al)

• Polyhedral compilation in production compilers e.g. IBM-XL,

RSTREAM

Polyhedral compilation of graphical dataflow programs?

• Polyhedral extraction from dataflow programs

• Synthesizing dataflow programs from polyhedral representation

83ni.com

Extracting Polyhedral Representation

• Identifying statement analogues

• Relating array accesses to a particular array allocation

• Execution schedule depends on the actual inplaceness

strategy

84ni.com

Static Control Dataflow Diagram (SCoD)

• Canonical form of dataflow program

• Inplaceness patterns that facilitate polyhedral extraction

• no new memory allocation for array data inside the SCoD

• Similarities with SCoP

• All computations nodes are functional

• Maximal dataflow diagram with countable loop constructs

• Loop bounds and conditional depend on parameters that are

invariant for the diagram

85ni.com

SCoD – Destructive Updates

• At most one destructive update of array data

86ni.com

Compute-dags as Statement Analogues

• Schedule of nodes exists such that no array copy is needed

• hint: schedule all array reads ahead of the array write

• SCoD as sequence of computations that over-write incoming

array data

• Compute-dags can be identified to serve as statement

analogues

87ni.com

Compute-dags as Statement Analogues

• A path exists from all nodes in the compute-dag to the root

88ni.com

Iteration Domain of Statement Analogues

89ni.com

Determining Schedule of Statement

Analogues

90ni.com

Analyzing Accesses of Statement Analogues

91ni.com

The PolyGLoT framework

92ni.com

Experimental evaluation

• Implemented benchmarks in Polybench suite in LabVIEW

• PolyGLoT as a separate transform pass in LV desktop compiler

• uses Pluto as the polyhedral optimizer (locality transformations +

parallelization)

• Dual-socket Intel(R) Xeon(R) CPU E5606 (2.13GHz) machine with

8 cores, 24GB RAM, 8MB L3 cache

93ni.com

Experimental evaluation
• lv-parallel - LabVIEW production compiler, with parallelization

• pg-par - LabVIEW compiler with PolyGLoT enabled for auto-

parallelization

• pg-loc-par - LabVIEW compiler with PolyGLoT enabled for auto-

parallelization + locality optimization

• mean speed-up of 2.30× with pg-loc-par over lv-parallel

94ni.com

Summary

• Graphical dataflow programming

• Simple, intuitive and accessible to novice programmers

• Well-suited for exploiting and expressing parallelism

• Used by scientists and engineers in various domains

• Optimizing and parallelizing LabVIEW compiler

• Clumps of independently schedulable sections of code

• Task parallelism, data parallelism, pipelining etc

• Parallel for loop for cross-iteration parallelism

• Polyhedral model for complex program transformations

95ni.com

Thanks!

Questions?

