Mining and Summarization of Software Problem Reports

Senthil Mani
Vibha S Sinha
Karthik Sankaranarayanan

IBM Research - India
Objective

Acquaint audience with typical scenarios and techniques where text mining is used on problem tickets
Bug’s Life

Bug gets opened

Did this bug exist before?

Bug’s Life

Bug gets opened

Who should fix this bug?

2. Who should fix this bug? Anvik et al. ICSE 2006
3. Improving bug triage with bug tossing graphs. Jeong et al. FSE 2009
Bug’s Life

Bug gets opened

How long would it take to fix this bug? What is its severity?

1. How Long Will It Take to Fix This Bug? Weiss et al. MSR 2007
Bug’s Life

Bug gets assigned

How should I fix this bug?

2. A topic-based approach for narrowing the search space of buggy files from a bug report. Nguyen et al. ASE 2011
Bug’s Life

Bug gets closed

What was the bug about?

1. Summarizing Software Artifacts: A Case Study of Bug Reports. Rastkar et al. ICSE 2010
2. AUSUM: approach for unsupervised bug report summarization. Mani et al. FSE 2012
Mining Support Forums

What are people having most trouble with?

What are some frequently asked questions?

1. Automated Support for Managing Feature Requests in Open Forums. J.Cleland-Huang et al. ACM Communications October 2009
2. Semi-automatically Extracting FAQs to Improve Accessibility of Software Development Knowledge. Stefan et al. ICSE 2012
Use of text mining/learning on non-bug artifacts

Fault Prediction

Search on code repository
1. Is text search an effective approach for fault localization: a practitioners perspective. SPLASH Wavefront 2012

Identify topics from code
1. Automated topic naming to support cross-project analysis of software maintenance activities. Hindle et al. MSR 2011

Code summarization
2. Towards automatically generating summary comments for Java methods. Sridhara et al. ASE 2010
Session Organization

• Sources and nature of problem data (15 mins)

• Techniques used to analyze (45 mins)

• Examples of tools that can be used (20 mins)

• State of the art papers (30 mins)
DATA SOURCES
What are software repositories?

Any repository that holds information about any software artifact

- **Code**: Code Version History (CVS, SVN etc.)
- **Bug / Problem Tickets**: Bug / Issue Tracking System (Bugzilla, JIRA, RTC etc.)
- **Q&A or Support Forums**: (StackExchange etc.)
<table>
<thead>
<tr>
<th>CVS</th>
<th>Bug Repository</th>
<th>Q&A Forums</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code evolves as software development progresses. Multiple people might work collaboratively on the same code. Further, they might work from distributed environment</td>
<td>No code is bug free. People using the software need to report bugs they face. Provide all necessary information about the bug, so that developers can recreate the bug and fix it.</td>
<td>Users need to understand the issues they observe in the product to decide whether they have made some mistakes (or) the issue is indeed a bug. Also, they might need specific information regarding the product.</td>
</tr>
</tbody>
</table>

- Help in tracking changes in the code
- Help in synchronizing changes done by multiple people

- Provide ways to report a bug
- Provide necessary structure to capture all details related to the bug
- Associate a life-cycle (status) to the bug

- Post questions
- Post Answers to the questions
- Provides ways to tag questions
- Search over existing questions
- Ways to solicit participation

Focus on Bug Repository and Q&A Forums
Life-cycle of a Bug Report (Bugzilla)

Source
http://www.bugzilla.org/docs/2.18/html/lifecycle.html
Sample Bug Report

Basic fields of a bug report
Basic Fields:
- Priority
- Severity
- Module or Application
- Created Date
- Closed Date

Unstructured Fields:
- Comments
- Description

User Specific:
- Who reported the bug
- Who closed the bug
- Users who commented on the bug
- Users who added attachments
Sample Bug Report from RTC

Some Basic Fields

Source:
https://jazz.net/jazz/web/projects/Rational%20Team%20Concert#action=com.ibm.team.workitem.viewWorkItem&id=10
Defect 10

Summary:
UCD: All predefined queries should be listed in the Work Item Explorer

History

Change by Patrick Streule (Apr 22, 2008 2:22:54 PM)

<table>
<thead>
<tr>
<th>Status</th>
<th>Reopened → Resolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>Unresolved → Duplicate</td>
</tr>
<tr>
<td>Planned For</td>
<td><Unassigned> → 0.6/0.6 RC1</td>
</tr>
<tr>
<td>Comments [#11]</td>
<td>This work item has been marked as a duplicate of work item 14497.</td>
</tr>
<tr>
<td>Resolved By</td>
<td>Unassigned → Patrick Streule (archived)</td>
</tr>
<tr>
<td>Resolution Date</td>
<td><Unassigned> → Apr 22, 2008</td>
</tr>
</tbody>
</table>

Change by Mike Wulkan (Dec 13, 2007 11:15:50 PM)

| Tags | added:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mwhot</td>
</tr>
</tbody>
</table>

Change by Andre Weinand (Mar 7, 2007 2:53:19 PM)

<table>
<thead>
<tr>
<th>Owned By</th>
<th>Unassigned → Patrick Streule (archived)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
<td>Medium → Unassigned</td>
</tr>
</tbody>
</table>

Change by Marcel Bihr (Feb 23, 2007 7:32:58 PM)

| Subscribed By | removed:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marcel Bihr (archived)</td>
</tr>
</tbody>
</table>

Change by Marcel Bihr (Feb 23, 2007 7:32:07 PM)

| Subscribed By | added:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marcel Bihr (archived)</td>
</tr>
</tbody>
</table>

Change by Mike Wulkan (Jan 30, 2007 11:40:31 PM)

<table>
<thead>
<tr>
<th>Severity</th>
<th>Normal → Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments [#10]</td>
<td>Just poking on this one again to see where it stands? I strongly believe that parameterized queries is a fundamental functional requirement and that supporting them in a uniform way throughout the UI as described above is the way to go.</td>
</tr>
</tbody>
</table>
Bug Tracking Systems

Bugzilla: http://www.bugzilla.org/
Projects: Mozilla, Linux Kernel, Gnome, KDE, Apache project, Open office, Eclipse,
Companies: NASA and Facebook

Atlassian - JIRA: http://www.atlassian.com/software/jira/overview
Projects: Apache (https://issues.apache.org/jira/secure/Dashboard.jspa), Hibernate, Sonatype, Spring, Codehaus, Flex, JBoss

Rational Team Concert – RTC: https://jazz.net/products/rational-team-concert/
Open Source Project: RSSOwl (http://www.rssowl.org/overview)
I couldn't find this anywhere; I might finding it with the wrong keywords.

Pictures paint a thousand words, so let me explain.

Supposed we have a set of unknown number of String:

```java
String hello = "Hello world\n Welcome\n"
String goodbye = "Goodbye\n See you in the next life\n"
String do = "Do something\n Be part of us\n"
```

I would like a function that produce such result:

```java
String hellogoodbyedo = "
 Hello world_________________________Goodbye____________________________Do Something\n Welcome____________________See you in the next life____Be part of us\n"
```

In which _ means spaces. Is there a smart way of doing such?
You can use

```java
System.out.printf("%-20s%-20s%-20s\n", field1, field2, field3);
```

Answer accepted by Peter Lawrey on Apr 29 '12 at 18:02

Votes:
- 4 upvotes
- 0 downvotes

Comments:
1. @AdamLiss True, but printf does. ;) – Peter Lawrey Apr 29 '12 at 18:12

 Yes. Much better after the edit, and amazing it was upvoted while it was still incorrect. The perils of crowdsourcing, I suppose, and probably why government survives. :-) – Adam Liss Apr 29 '12 at 18:13

 format string has typos. Try: `System.out.printf("%-20s%-20s%-20s", field1, field2, field3);` – maybeWeCouldStealAVan Apr 29 '12 at 18:14

 @AdamLiss Indeed. Fixed now. – Peter Lawrey Apr 29 '12 at 18:16

show 4 more comments
Nature of Data

Structured
Any fields or attributes of bug reports of Q&A forums which *does not contain* free text

- Bug Reports: Priority, Severity, Application, Component, Start – End – Modified Dates, People information etc.
- Q&A Forums: Date of post (question or answer), people information (reputation score, badges), number of votes, accepted answer or not, tags etc.

Unstructured
Any filed or attributes of bug reports or Q&A forums which *contains* free text

- Bug Reports: Title, Summary, Description, Comments, Running Notes
- Q&A Forums: Question, Answers and Comments
Nature of Data

Variations in Unstructured Text Field of Bug Reports

- Dumps of Stack Traces
- Dumps of Error Logs

- Email Snippets
- Chat Transcripts
- People Names
- Manually created vs. Auto Generated

Should have been provided as Attachments

Typically observed in bug reports in commercial software projects
Data Sources

MIRRORS OF VERSION ARCHIVES AND BUG DATABASES FOR MOLZILLA AND FIREFOX AND ECLIPSES
http://msr.uwaterloo.ca/msr2008/challenge/

REPOSITORY LOGS OF OVER 500+ GNOME PROJECTS, XML DUMP OF THE BUG DATABASES, AND THE COMPLETE SVN REPOSITORIES OF GNOME PROJECTS
http://msr.uwaterloo.ca/msr2009/challenge/

DATABASE WITH INFORMATION ABOUT PACKAGES AND BUG REPORTS OF DEBIAN AND UBUNTU
http://udd.debian.org/

ECLIPSE BUG DATA FOR SEVERAL RELEASES
http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/

FLOSSMOLE: DATABASE OF ALL SOURCEFORGE.NET PROJECTS
http://flossmole.org/

STACKEXCHANGE FORUM DATA SET
Conferences and Journals

International Working Conference Mining Software Repositories (MSR)
http://2013.msrconf.org/

International Conference on Software Maintenance (ICSM)
http://icsm2013.tue.nl/

International Conference on Software Engineering (ICSE)
http://2014.icse-conferences.org/

Foundations of Software Engineering (FSE)
http://esec-fse.inf.ethz.ch/

IEEE Transactions on Software Engineering (TSE)
http://www.computer.org/portal/web/tse

Empirical Software Engineering
http://link.springer.com/journal/10664

ACM Transactions on Software Engineering and Methodology (TOSEM)
http://tosem.acm.org/

Source
http://www.slideshare.net/herraiz/20100618-daniel-uah
TECHNIQUES USED
Techniques Used

Analysis Techniques

Data driven techniques

- Machine learning:
 - Classification
 - Clustering
 - Ranking
 - Topic Modeling

Domain knowledge driven

- Rule-based
- Regular Expressions

Abundance of data

Popular
Machine Learning Techniques

• Classification or Categorization
 "boiling down" of document content to "pre-defined labels" which "does not lead to discovery of new information" since "presumably the person who wrote the document knew what it was about" - Hearst (1999)

• Clustering
 Group documents into natural categories that arise from statistical, lexical, and semantic analysis rather than the arbitrarily pre-determined categories – M. Sharp (2001)

A Document is a bug report, problem ticket, any piece of free text...

How do you represent these documents?
Outline

• Document Representation
 • Similarity measures

• Classification

• Clustering
 • Flat Clustering
 • Hierarchical

• Topic Modeling
Outline

• Document Representation
 • Similarity measures

• Classification

• Clustering
 • Flat Clustering
 • Hierarchical

• Topic Modeling
Binary incidence matrix

<table>
<thead>
<tr>
<th></th>
<th>Anthony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHONY</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BRUTUS</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CAESAR</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CALPURNIA</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CLEOPATRA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MERCY</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WORSER</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Each document is represented as a binary vector \(\in \{0, 1\}^{|V|} \).
Count matrix

<table>
<thead>
<tr>
<th></th>
<th>Anthony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHONY</td>
<td>157</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BRUTUS</td>
<td>4</td>
<td>157</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CAESAR</td>
<td>232</td>
<td>227</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CALPURNIA</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CLEOPATRA</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MERCY</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>WORSER</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Each document is now represented as a count vector $\in \mathbb{N}^{|V|}$.

32
Bag of words model

• We do not consider the order of words in a document.
• John is quicker than Mary
 and
 Mary is quicker than John
 are represented the same way.
• This is called a bag of words model
• Simple, works well.
Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the **number of times that t occurs in d**.

- Raw term frequency is not what we want because:
 - A document with $tf = 10$ occurrences of the term is more relevant than a document with $tf = 1$ occurrence of the term, but not 10 times more relevant.
 - Relevance does not increase proportionally with term frequency.

- **Log frequency weighting**

 - The log frequency weight of term t in d is defined as follows

 $$w_{t,d} = \begin{cases}
 1 + \log_{10} tf_{t,d} & \text{if } tf_{t,d} > 0 \\
 0 & \text{otherwise}
 \end{cases}$$

 - $tf_{t,d} \rightarrow w_{t,d}$:
 - $0 \rightarrow 0$, $1 \rightarrow 1$, $2 \rightarrow 1.3$, $10 \rightarrow 2$, $1000 \rightarrow 4$, etc.
Frequency within document vs. frequency in entire collection

- In addition to term frequency (the frequency of the term in the document) . . .
 . . . we also want to use the frequency of the term in the collection for weighting
 and ranking.

- Frequent terms are less informative than rare terms.
- Consider a term that is frequent in the collection (e.g., BUG).
 . . . words like BUG, ERROR, TICKET are not discriminatory/important.

- We will use document frequency to factor this into representation

- The document frequency is the number of documents in the collection that the
term occurs in.
idf weight

- df_t is the document frequency, the number of documents that t occurs in.
- df_t is an inverse measure of the informativeness of term t.
- We define the idf weight of term t as follows:

$$\text{idf}_t = \log_{10} \frac{N}{df_t}$$

(N is the number of documents in the collection.)

- idf_t is a measure of the informativeness of the term.
- $[\log N/df_t]$ instead of $[N/df_t]$ to “dampen” the effect of idf
 - Note that we use the log transformation for both term frequency and document frequency.
tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and its idf weight.

\[w_{t,d} = (1 + \log \text{tf}_{t,d}) \cdot \log \frac{N}{\text{df}_t} \]

- The tf-idf weight . . .
 - . . . increases with the number of occurrences within a document. (term frequency)
 - . . . increases with the rarity of the term in the collection. (inverse document frequency)

- Best known weighting scheme in information retrieval
Binary \rightarrow count \rightarrow weight matrix

<table>
<thead>
<tr>
<th>Anthony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHONY</td>
<td>5.25</td>
<td>3.18</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BRUTUS</td>
<td>1.21</td>
<td>6.10</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CAESAR</td>
<td>8.59</td>
<td>2.54</td>
<td>0.0</td>
<td>1.51</td>
<td>0.25</td>
</tr>
<tr>
<td>CALPURNIA</td>
<td>0.0</td>
<td>1.54</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CLEOPATRA</td>
<td>2.85</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MERCY</td>
<td>1.51</td>
<td>0.0</td>
<td>1.90</td>
<td>0.12</td>
<td>5.25</td>
</tr>
<tr>
<td>WORSER</td>
<td>1.37</td>
<td>0.0</td>
<td>0.11</td>
<td>4.15</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Each document is now represented as a real-valued vector of tf idf weights $\in \mathbb{R}^{|V|}$.
Documents as vectors

- Each document is now represented as a real-valued vector of tf-idf weights \(\in \mathbb{R}^{|V|} \).
- So we have a \(|V|\)-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.

How do you compute which documents are similar and which are not?
Vector space similarity?

- How about: (negative) distance between two points
 - = distance between the end points of the two vectors
- Euclidean distance is a bad idea . . .
 - . . . because Euclidean distance is large for vectors of different lengths.

The Euclidean distance of \(\vec{q} \) and \(\vec{d}_2 \) is large although the distribution of terms in the query \(q \) and the distribution of terms in the document \(d_2 \) are very similar.
Use angle instead of distance

- Rank documents according to angle with query
- Thought experiment: take a document d and append it to itself. Call this document \(d' \). \(d' \) is twice as long as \(d \).
- “Semantically” \(d \) and \(d' \) have the same content.
- The angle between the two documents is 0, corresponding to maximal similarity . . .
- . . . even though the Euclidean distance between the two documents can be quite large.
From angles to cosines

- The following two notions are equivalent.
 - Rank documents according to the **angle** between query and document in decreasing order
 - Rank documents according to **cosine**(query,document) in increasing order
- Cosine is a monotonically decreasing function of the angle for the interval [0°, 180°]
Cosine similarity between query and document

\[
\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}
\]

- \(q_i\) is the tf-idf weight of term \(i\) in the query.
- \(d_i\) is the tf-idf weight of term \(i\) in the document.
- For normalized vectors, the cosine is equivalent to the dot product or scalar product.

\[
\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i d_i
\]

(if \(\vec{q}\) and \(\vec{d}\) are length-normalized).
Outline

• Document Representation
 • Similarity measures

• Classification

• Clustering
 • Flat Clustering
 • Hierarchical

• Topic Modeling
Classification: Training

Given:

- **A document space** X
 - Documents are represented in this space – typically some type of high-dimensional space.

- A fixed set of **classes** $C = \{c_1, c_2, \ldots, c_j\}$
 - The classes are human-defined for the needs of an application (e.g., relevant vs. nonrelevant).

- A **training set** D of labeled documents with each labeled document $<d, c> \in X \times C$

Using a learning method or **learning algorithm**, we then wish to learn a **classifier** γ that maps documents to classes:

$$\gamma : X \to C$$
Classification: Application or Testing

Given: a description \(d \in X \) of a document
Determine: \(\Upsilon(d) \in C \),
that is, the class that is most appropriate for \(d \)
Linear classifiers

- Linear classifiers compute a linear combination or weighted sum of the feature values.
- Classification decision: $\sum_i w_i x_i > \theta$?

- Geometrically, the equation $\sum_i w_i x_i = \theta$ defines a line (2D), a plane (3D) or a hyperplane (higher dimensionalities).
- Assumption: The classes are linearly separable.
- Methods for finding a linear separator: Perceptron, Naive Bayes, linear support vector machines....

Let’s look at Naïve Bayes Classifier...
The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document \(d\) being in a class \(c\) as follows:

\[
P(c|d) \propto P(c) \prod_{1 \leq k \leq n_d} P(t_k|c)
\]

- \(n_d\) is the length of the document. (number of tokens)
- \(P(t_k|c)\) is the conditional probability of term \(t_k\) occurring in a document of class \(c\)
- \(P(t_k|c)\) as a measure of how much evidence \(t_k\) contributes that \(c\) is the correct class.
- \(P(c)\) is the prior probability of \(c\).
- If a document’s terms do not provide clear evidence for one class vs. another, we choose the \(c\) with highest \(P(c)\).
Our goal in Naive Bayes classification is to find the “best” class.
The best class is the most likely or maximum a posteriori (MAP) class c_{map}:

$$c_{\text{map}} = \arg \max_{c \in \mathcal{C}} \hat{P}(c|d) = \arg \max_{c \in \mathcal{C}} \hat{P}(c) \prod_{1 \leq k \leq n_d} \hat{P}(t_k|c)$$
Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- Since $\log(xy) = \log(x) + \log(y)$, we can sum log probabilities instead of multiplying probabilities.
- Since log is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$c_{\text{map}} = \arg \max_{c \in C} \left[\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k | c) \right]$$
Naive Bayes classifier

- Classification rule:

\[c_{\text{map}} = \arg \max_{c \in \mathbb{C}} \left[\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k | c) \right] \]

- Simple interpretation:
 - Each conditional parameter log \(\hat{P}(t_k | c) \) is a weight that indicates how good an indicator \(t_k \) is for \(c \).
 - The prior log \(\hat{P}(c) \) is a weight that indicates the relative frequency of \(c \).
 - The sum of log prior and term weights is then a measure of how much evidence there is for the document being in the class.
 - We select the class with the most evidence.
Parameter estimation take 1: Maximum likelihood

- Estimate parameters $\hat{P}(c)$ and $\hat{P}(t_k|c)$ from train data: How?
- Prior:

 $$\hat{P}(c) = \frac{N_c}{N}$$

- N_c : number of docs in class c; N: total number of docs
- Conditional probabilities:

 $$\hat{P}(t|c) = \frac{T_{ct}}{\sum_{t' \in V} T_{ct'}}$$

- T_{ct} is the number of tokens of t in training documents from class c (includes multiple occurrences)
- We’ve made a Naive Bayes independence assumption here:

 $$\hat{P}(t_{k_1}|c) = \hat{P}(t_{k_2}|c)$$
Naive Bayes: Training

\[\text{TrainMultinomialNB}(C, \mathcal{D})\]

1. \(V \leftarrow \text{ExtractVocabulary}(\mathcal{D}) \)
2. \(N \leftarrow \text{CountDocs}(\mathcal{D}) \)
3. \textbf{for each} \(c \in C \)
4. \textbf{do} \(N_c \leftarrow \text{CountDocsInClass}(\mathcal{D}, c) \)
5. \hspace{1em} \text{} \(\text{prior}[c] \leftarrow N_c / N \)
6. \hspace{1em} \text{} \(\text{text}_c \leftarrow \text{ConcatenateTextOfAllDocsInClass}(\mathcal{D}, c) \)
7. \hspace{1em} \textbf{for each} \(t \in V \)
8. \hspace{2em} \textbf{do} \(T_{ct} \leftarrow \text{CountTokensOfClass}(\text{text}_c, t) \)
9. \hspace{1em} \textbf{for each} \(t \in V \)
10. \hspace{2em} \textbf{do} \(\text{condprob}[t][c] \leftarrow \frac{T_{ct} + 1}{\sum_{t'}(T_{ct'} + 1)} \)
11. \textbf{return} \(V, \text{prior}, \text{condprob} \)
Naive Bayes: Testing

\[
\text{APPLYMULTINOMIALNB}(\mathbb{C}, V, \text{prior}, \text{condprob}, d)\\
1. \quad W \leftarrow \text{EXTRACTTOKENSFROMDOC}(V, d)\\
2. \quad \text{for each } c \in \mathbb{C}\\
3. \quad \text{do } \text{score}[c] \leftarrow \log \text{prior}[c]\\
4. \quad \quad \text{for each } t \in W\\
5. \quad \quad \text{do } \text{score}[c] + = \log \text{condprob}[t][c]\\
6. \quad \text{return } \arg \max_{c \in \mathbb{C}} \text{score}[c]
\]
Time complexity of Naive Bayes

<table>
<thead>
<tr>
<th>mode</th>
<th>time complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>training</td>
<td>$\Theta(</td>
</tr>
<tr>
<td>testing</td>
<td>$\Theta(L_a +</td>
</tr>
</tbody>
</table>

- L_{ave}: average length of a training doc, L_a: length of the test doc, M_a: number of distinct terms in the test doc, \mathcal{D}: training set, V: vocabulary, \mathcal{C}: set of classes
- $\Theta(|\mathcal{D}|L_{\text{ave}})$ is the time it takes to compute all counts.
- $\Theta(|\mathcal{C}||V|)$ is the time it takes to compute the parameters from the counts.
- Generally: $|\mathcal{C}||V| < |\mathcal{D}|L_{\text{ave}}$
- Test time is also linear (in the length of the test document).
- **Thus: Naive Bayes is linear** in the size of the training set (training) and the test document (testing). This is optimal.
Naive Bayes is not so naive

- Naive Bayes has won some bakeoffs (e.g., KDD-CUP)
- More robust to non-relevant features than some more complex learning methods
- More robust to concept drift (changing of definition of class over time) than some more complex learning methods
- Better than methods like decision trees when we have many equally important features
- A good dependable baseline for text classification (but not the best)
- Optimal if independence assumptions hold (never true for text, but true for some domains)
- Very fast
- Low storage requirements
Evaluating classification

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
- It’s easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set).
- Measures: Precision, recall, F_1, classification accuracy
Precision P and recall R

<table>
<thead>
<tr>
<th></th>
<th>in the class</th>
<th>not in the class</th>
</tr>
</thead>
<tbody>
<tr>
<td>predicted to be in the class</td>
<td>true positives (TP)</td>
<td>false positives (FP)</td>
</tr>
<tr>
<td>predicted to not be in the class</td>
<td>false negatives (FN)</td>
<td>true negatives (TN)</td>
</tr>
</tbody>
</table>

\[
P = \frac{TP}{TP + FP}
\]

\[
R = \frac{TP}{TP + FN}
\]
A combined measure: F

- F_1 allows us to trade off precision against recall.

\[
F_1 = \frac{1}{\frac{1}{2} \frac{1}{P} + \frac{1}{2} \frac{1}{R}} = \frac{2PR}{P + R}
\]

- This is the harmonic mean of P and R:
Outline

- Document Representation
 - Similarity measures

- Classification

- Clustering
 - Flat Clustering
 - Hierarchical

- Topic Modeling
Clustering: Definition

- (Document) clustering is the process of grouping a set of documents into clusters of similar documents.
- Documents within a cluster should be similar.
- Documents from different clusters should be dissimilar.
- Clustering is the most common form of unsupervised learning.
- Unsupervised = there are no labeled or annotated data.
Classification vs. Clustering

- Classification: **supervised** learning
- Clustering: **unsupervised** learning

Classification: Classes are *human-defined* and part of the input to the learning algorithm.

Clustering: Clusters are *inferred from the data* without human input.

However, there are many ways of influencing the outcome of clustering: number of clusters, similarity measure, representation of documents, . . .
High-level Comparison

Classification

- **Advantage:**
 - Classification “rules” are identified automatically, which is useful for large document sets.
 - You know what each output means.

- **Disadvantages:**
 - You must assign documents to categories before generating the rules.
 - Rules may not be as specific or accurate as the ones you would write yourself.

Clustering

- **Advantages:**
 - You don’t need to provide either the classification rules or the sample documents as a training set.
 - Helps to discover patterns and content similarities in your document set that you might overlook.

- **Disadvantages:**
 - Clustering might result in unexpected groupings, since the clustering operation is not user-defined, but based on an internal algorithm.
 - You do not see the rules that create the clusters.

Two ways to combine these depending on scenarios:

1. When you do not have a clear idea of rules or classifications: Use unsupervised classification to provide an initial set of categories, and to subsequently build on these through supervised classification.

2. When you have a lot of data but only a small subset of it is labeled, and the rest is unlabeled. Employ formulations which perform clustering keeping in mind the labeled examples which *guide* which documents should be grouped together and which should not. This is called *semi-supervised learning.*
Data set with clear cluster structure

Finding the cluster structure in this example
Goals for clustering

- General goal: put related docs in the same cluster, put unrelated docs in different clusters.
 - How do we formalize this?
 - The number of clusters should be appropriate for the data set we are clustering.
 - Assume the number of clusters K is given.
 - Semi-automatic methods for determining K

- Secondary goals in clustering
 - Avoid very small and very large clusters
 - Define clusters that are easy to explain to the user
 - Many others . . .
Flat vs. Hierarchical clustering

- Flat algorithms
 - Usually start with a random (partial) partitioning of docs into groups
 - Refine iteratively
 - Main algorithm: K-means

- Hierarchical algorithms
 - Create a hierarchy
 - Bottom-up, agglomerative
 - Top-down, divisive
Hard vs. Soft clustering

- Hard clustering: Each document belongs to **exactly one** cluster.
 - More common and easier to do

- Soft clustering: A document can belong to **more than one** cluster.
 - Makes more sense for applications like creating browsable hierarchies
 - You may want to put sneakers in two clusters:
 - sports apparel
 - shoes
 - You can only do that with a soft clustering approach.
Outline

• Document Representation
 • Similarity measures

• Classification

• Clustering
 • Flat Clustering
 • Hierarchical

• Topic Modeling
Flat algorithms

- Flat algorithms compute a partition of N documents into a set of K clusters.
- Given: a set of documents and the number K
- Find: a partition into K clusters that optimizes the chosen partitioning criterion
- Global optimization: exhaustively enumerate partitions, pick optimal one
 - Not tractable
- Effective heuristic method: K-means algorithm
K-means

- Perhaps the best known clustering algorithm
- Simple, works well in many cases

Each cluster in K-means is defined by a **centroid**.
Objective/partitioning criterion: minimize the average squared difference from the centroid

\[
\bar{\mu}(\omega) = \frac{1}{|\omega|} \sum_{\mathbf{x} \in \omega} \mathbf{x}
\]

where we use \(\omega \) to denote a cluster.

- We try to find the minimum average squared difference by iterating two steps:
 - **reassignment**: assign each vector to its closest centroid
 - **recomputation**: recompute each centroid as the average of the vectors that were assigned to it in reassignment
K-means algorithm

\[\text{K-MEANS}(\{\vec{x}_1, \ldots, \vec{x}_N\}, K) \]

1. \((\vec{s}_1, \vec{s}_2, \ldots, \vec{s}_K) \leftarrow \text{SELECTRANDOMSEEDS}(\{\vec{x}_1, \ldots, \vec{x}_N\}, K)\)
2. \textbf{for} \(k \leftarrow 1\) \textbf{to} \(K\)
3. \quad \textbf{do} \(\vec{\mu}_k \leftarrow \vec{s}_k\)
4. \quad \textbf{while} \ stopping criterion has not been met
5. \textbf{do for} \(k \leftarrow 1\) \textbf{to} \(K\)
6. \quad \textbf{do} \(\omega_k \leftarrow \{\}\)
7. \quad \textbf{for} \(n \leftarrow 1\) \textbf{to} \(N\)
8. \quad \textbf{do} \(j \leftarrow \text{arg min}_{j'} |\vec{\mu}_{j'} - \vec{x}_n|\)
9. \quad \quad \omega_j \leftarrow \omega_j \cup \{\vec{x}_n\} \quad \text{(reassignment of vectors)}
10. \quad \textbf{for} \(k \leftarrow 1\) \textbf{to} \(K\)
11. \quad \textbf{do} \(\vec{\mu}_k \leftarrow \frac{1}{|\omega_k|} \sum_{\vec{x} \in \omega_k} \vec{x}\) \quad \text{(recomputation of centroids)}
12. \textbf{return} \(\{\vec{\mu}_1, \ldots, \vec{\mu}_K\}\)
Worked Example: Set of to be clustered
Worked Example: Random selection of initial centroids

Exercise: (i) Guess what the optimal clustering into two clusters is in this case; (ii) compute the centroids of the clusters
Worked Example: Assign points to closest center
Worked Example: Assignment
Worked Example: Recompute cluster centroids
Worked Example: Assign points to closest centroid
Worked Example: Assignment
Worked Example: Recompute cluster centroids
Worked Example: Assign points to closest centroid
Worked Example: Assignment
Worked Example: Recompute cluster centroids
Worked Example: Assign points to closest centroid
Worked Example: Assignment
Worked Example: Recompute cluster centroids
Worked Example: Assign points to closest centroid
Worked Example: Assignment
Worked Example: Recompute cluster centroids
Worked Example: Assign points to closest centroid
Worked Example: Assignment
Worked Example: Recompute cluster centroids
Worked Example: Assign points to closest centroid
Worked Example: Assignment
Worked Example: Recompute cluster centroids
Worked Ex.: Centroids and assignments after convergence
Initialization of K-means

- Random seed selection is just one of many ways K-means can be initialized.
- Random seed selection is not very robust: It’s easy to get a suboptimal clustering.
- Better ways of computing initial centroids:
 - Select seeds not randomly, but using some heuristic (e.g., filter out outliers or find a set of seeds that has “good coverage” of the document space)
 - Use hierarchical clustering to find good seeds
 - Select i (e.g., $i = 10$) different random sets of seeds, do a K-means clustering for each, select the clustering with lowest RSS
Time complexity of K-means

- Computing one distance of two vectors is $O(M)$.
- Reassignment step: $O(KNM)$ (we need to compute KN document-centroid distances)
- Recomputation step: $O(NM)$ (we need to add each of the document’s $< M$ values to one of the centroids)
- Assume number of iterations bounded by I
- Overall complexity: $O(INKM)$ – linear in all important dimensions
- However: This is not a real worst-case analysis.
- In pathological cases, complexity can be worse than linear.
What is a good clustering?

- **Internal criteria**
 - Example of an internal criterion: RSS in K-means
 - But an internal criterion often does not evaluate the actual utility of a clustering in the application.
- **Alternative: External criteria**
 - Evaluate with respect to a human-defined classification
External criteria for clustering quality

- Based on a gold standard data set, e.g., the class labels we would use for the evaluation of classification
- Goal: Clustering should reproduce the classes in the gold standard
- First measure for how well we were able to reproduce the classes: purity
External criterion: Purity

\[
purity(\Omega, C) = \frac{1}{N} \sum_{k} \max_{j} |\omega_k \cap c_j|
\]

- \(\Omega = \{\omega_1, \omega_2, \ldots, \omega_K\}\) is the set of clusters and \(C = \{c_1, c_2, \ldots, c_J\}\) is the set of classes.
- For each cluster \(\omega_k\): find class \(c_j\) with most members \(n_{kj}\) in \(\omega_k\)
- Sum all \(n_{kj}\) and divide by total number of points
Two other external evaluation measures

- Two other measures
- Normalized mutual information (NMI)
 - How much information does the clustering contain about the classification?
 - Singleton clusters (number of clusters = number of docs) have maximum MI
 - Therefore: normalize by entropy of clusters and classes
- F measure
 - “precision” and “recall” can be weighted
How many clusters?

- Number of clusters K is given in many applications.
 - There may be an external constraint on K.

- What if there is no external constraint? Is there a “right” number of clusters?
- One way to go: define an optimization criterion
 - Given docs, find K for which the optimum is reached.
 - What optimization criterion can we use?
 - We can’t use RSS or average squared distance from centroid as criterion: always chooses $K = N$ clusters.
Simple objective function for K (1)

- Basic idea:
 - Start with 1 cluster ($K = 1$)
 - Keep adding clusters (= keep increasing K)
 - Add a penalty for each new cluster
 - Trade off cluster penalties against average squared distance from centroid
 - Choose the value of K with the best tradeoff
Simple objective function for K (2)

- Given a clustering, define the cost for a document as (squared) distance to centroid
- Define total distortion $\text{RSS}(K)$ as sum of all individual document costs (corresponds to average distance)
- Then: penalize each cluster with a cost λ
- Thus for a clustering with K clusters, total cluster penalty is $K\lambda$
- Define the total cost of a clustering as distortion plus total cluster penalty: $\text{RSS}(K) + K\lambda$
- Select K that minimizes $(\text{RSS}(K) + K\lambda)$
- Still need to determine good value for λ . . .
Finding the “knee” in the curve

Pick the number of clusters where curve “flattens”. Here: 4 or 9.
Outline

• Document Representation
 • Similarity measures

• Classification

• Clustering
 • Flat Clustering
 • Hierarchical

• Topic Modeling
Hierarchical clustering

Our goal in hierarchical clustering is to create a hierarchy something like:

We want to create this hierarchy automatically. We can do this either top-down or bottom-up. A well known bottom-up method is hierarchical agglomerative clustering (HAC).
Hierarchical agglomerative clustering (HAC)

- HAC creates a hierarchy in the form of a binary tree.
- Assumes a similarity measure for determining the similarity of two clusters.
- Up to now, our similarity measures were for documents.
- We will look at four different cluster similarity measures.
Hierarchical agglomerative clustering (HAC)

- Start with each document in a separate cluster
- Then repeatedly merge the two clusters that are most similar
- Until there is only one cluster
- The history of merging is a hierarchy in the form of a binary tree.
- The standard way of depicting this history is a dendrogram.
The history of mergers can be read off from bottom to top.

The horizontal line of each merger tells us what the similarity of the merger was.

We can cut the dendrogram at a particular point (e.g., at 0.1 or 0.4) to get a flat clustering.
Computational complexity of the naive algorithm

- First, we compute the similarity of all $N \times N$ pairs of documents.
- Then, in each of N iterations:
 - We scan the $O(N \times N)$ similarities to find the maximum similarity.
 - We merge the two clusters with maximum similarity.
 - We compute the similarity of the new cluster with all other (surviving) clusters.
- There are $O(N)$ iterations, each performing a $O(N \times N)$ “scan” operation.
- Overall complexity is $O(N^3)$.

Key question: How to define cluster similarity

- Single-link: Maximum similarity
 - Maximum similarity of any two documents
- Complete-link: Minimum similarity
 - Minimum similarity of any two documents
- Centroid: Average “intersimilarity”
 - Average similarity of all document pairs (but excluding pairs of docs in the same cluster)
 - This is equivalent to the similarity of the centroids.
- Group-average: Average “intrasimilarity”
 - Average similarity of all document pairs, including pairs of docs in the same cluster
Cluster similarity: Example
Single-link: Maximum similarity
Complete-link: Minimum similarity
Centroid: Average intersimilarity

intersimilarity = similarity of two documents in different clusters
Group average: Average intrasimilarity

\[\text{intrasimilarity} = \text{similarity of any pair}, \text{ including cases where the two documents are in the same cluster} \]
Flat or hierarchical clustering?

- For high efficiency, use flat clustering
- For deterministic results: HAC
- When a hierarchical structure is desired: hierarchical algorithm
- HAC also can be applied if K cannot be predetermined (can start without knowing K)
Major issue in clustering – labeling

- After a clustering algorithm finds a set of clusters: how can they be useful to the end user?
- We need a **descriptive yet concise** label for each cluster.
- How can we **automatically** find good labels for clusters?
Discriminative labeling

- To label cluster ω, compare ω with all other clusters.
- Find terms or phrases that distinguish ω from the other clusters.
- We can use any of the feature selection techniques: mutual information, χ^2 and frequency of the terms/phrases.
Non-discriminative labeling

- Select terms or phrases based solely on information from the cluster itself
- Terms with high weights in the centroid (if we are using a vector space model)
- Non-discriminative methods sometimes select frequent terms that do not distinguish clusters.
 - For example, MONDAY, TUESDAY, ... in newspaper text
Outline

• Document Representation
 • Similarity measures

• Classification

• Clustering
 • Flat Clustering
 • Hierarchical

• Topic Modeling
Topic Modeling

1. Data are assumed to be observed from a generative probabilistic process that includes hidden variables.
 • In text, the hidden variables are the thematic structure.

2. Infer the hidden structure using posterior inference
 • What are the topics that describe this collection?

3. Situate new data into the estimated model.
 • How does a new document fit into the topic structure?
Latent Dirichlet allocation (LDA)

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—How many genes does an organism need to survive? Last week at the genome meeting here, two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today’s organisms can be sustained with just 250 genes and that the earliest life forms required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn’t be enough.

Although the numbers don’t match precisely, those predictions “are not all that far apart,” especially in comparison to the 75,000 genes in the human genome, notes Siv Andersson of Uppsala University in Sweden, who arrived at the 800 number. But coming up with a consensus answer may be more than just a genetic numbers game, particularly as more and more genomes are completely mapped and sequenced. “It may be a way of organizing any newly sequenced genome,” explains Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing an

Simple intuition: Documents exhibit multiple topics.
Generative model for LDA

Each **topic** is a distribution over words

Each **document** is a mixture of corpus-wide topics

Each **word** is drawn from one of those topics
Generative model for LDA

In reality, we only observe the documents
The other structure are hidden variables
Graphical Model for LDA

From a collection of documents, infer
- Per-word topic assignment $Z_{d,n}$
- Per-document topic proportions d
- Per-corpus topic distributions k

Then use posterior expectations to perform the task at hand, e.g., document similarity, exploration, ...
Approximate posterior inference algorithms

- Mean field variational methods (Blei et al., 2001, 2003)
- Expectation propagation (Minka and Lafferty, 2002)
- Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)
- Collapsed variational inference (Teh et al., 2006)
- Online variational inference (Hoffman et al., 2010)

Also see Mukherjee and Blei (2009) and Asuncion et al. (2009).
Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does an organism need to survive? Last week at the genome meeting here, two genome researchers with radically different approaches presented complementary views of the basic genes needed for life.

One research team, using computer analyses to compare known genomes, concluded that today’s organisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn’t be enough.

Although the numbers don’t match precisely, those predictions “are not all that far apart,” especially in comparison to the 75,000 genes in the human genome, notes Siv Andersson of Uppsala University in Sweden, who arrived at the 800 number. But coming up with a consensus answer may be more than just a genetic numbers game, particularly as more and more genomes are completely mapped and sequenced. “It may be a way of organizing any newly sequenced genome,” explains Arcady Mushegain, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing an

SCIENCE • VOL. 272 • 24 MAY 1996

Blei, KDD 2011

129
Some extracted topics
Tools

• Document similarity: Vector Space Model: Lucene/Solr

• Classification: Naïve Bayes: Weka

• Clustering: Kmeans: Cluto/Carrot2

• Topic Modeling: LDA: Mallet
A Quick Review

STATE-OF-THE-ART
Duplicate Bug Report Detection

Between Nov-12 to Dec-12 –
• 5713 bugs were opened
• 3773 were marked duplicates

Detection of Duplicate Defect Reports using NLP – ICSE 2007

Technique:

– Calculate Cosine Similarity of bug report with other reports
 • Project name
 • Title
 • Description
– Give top 5, 10, 15 matches

Pre-Processing:

– Tokenization, stemming, stop word removal, project specific synonym dictionary, spellchecking
Detection of Duplicate Defect Reports using NLP
– ICSE 2007

Experiment:
- Subject: Sony Ericsson Mobile Communications products. 10% bugs were marked as duplicates.
- Measurement criteria: Recall

Findings:
- Maximum recall of 39% with result size of 10, 42% with 15
- Very small improvements in recall because of – synonyms, spell checking, giving header double weight
- Recall rate best when bug reports only compared with bug reports opened in prior 50-60 days
An Approach to Detecting Duplicate Bug Reports using Natural Language and execution information – ICSE 2008

Hypothesis: detect similarity based on execution information and text similarity and combine to mark reports as duplicate

Intuition:

Bug-260331: After closing Firefox, the process is still running. Cannot reopen Firefox after that, unless the previous process is killed manually

Very little text similarity

Bug-239223: (Ghostproc) – [Meta] firefox.exe doesn’t always exit after closing all windows; session-specific data retained

Very little execution information similarity

Bug-244372: "Document contains no data" message on continuation page of NY Times article

Bug-219232: random "The Document contains no data." Alerts
An Approach to Detecting Duplicate Bug Reports using Natural Language and execution information – ICSE 2008

Approach:

- Calculate text similarity using Vector Space Model (NL-S)
- Calculate execution trace similarity by converting execution trace to text – retain method signature only (E-S)
- Combine above measures and rank
 - Variant 1: NL-S + E-S / 2
 - Variant 2: If NL-S > NL-Cutoff, then use NL-S only (NL dominant), if EL-S > EL-Cutoff, then use EL-S only (ES dominant)
 - Variant 2.1: Rank NS dominant bug reports higher
 - Variant 2.2: Rank ES dominant bug reports higher
An Approach to Detecting Duplicate Bug Reports using Natural Language and execution information – ICSE 2008

Experiment:

– Subject: Firefox (232 bug reports from Eclipse used for calibration). 1492 reports. 744 considered to be the search set. 748 as queries.

– Measurement criteria: Recall

Findings:

67 – 93% recall when using variant 2.1. Use title only for text similarity
Duplicate bug report detection with a combination of information retrieval and topic modeling. – ASE 2012

Idea:
• Model duplicate bug reports using historical data
 – Learn sets of different terms describing same technical issue
• Apply model to new bug reports and identify duplicate

Approach:
• Each bug report modeled by LDA (topics proportion, etc)
 – Duplicate bug reports share same buggy topics
• Learn LDA parameters from training stage
• Report duplicate if high topic proportion similarity with group
 – Similarity using Jensen-Shannon divergence (method to estimate similarity of two distributions)
• IR scoring: using sum of tf-idf weights of all words in bug report
Duplicate bug report detection with a combination of information retrieval and topic modeling. – ASE 2012

Marked Correct if duplicate in top 10

Eclipse – comparison of approaches

Time complexity
Bug Triaging
Objective: Apply machine learning techniques to assist in bug triage by using text categorization to predict the developer that should work on the bug based on the bug’s description.

Approach:
- Treat Bug Assignment Problem as ‘text classification’.
- Use Supervised learning technique, by using past resolved bugs as the data set.
- Used Bayesian Learning Approach
 - Elegant, Adaptable to multi-class problem and performs well.
Experiment
Preparing the Data Set: Selection of Eclipse Bug Reports (15859)
- Identifying the developer who fixed the bug
 - Assigned To Developer resolved it
 - Person who marked the bug as resolved (other than submitter)
 - Person who marked the bug as fixed
 - First responder to bug (when bug was not fixed – duplicate etc.)
- No body responded to bugs (then those bugs were removed)
- Not resolved then most recent assigned-to developer
- Final Set of reports – 15670 with 162 developers
- Words extracted from summary and description → tokenized → bag of words (no stemming)
- Randomly created training set and test set
- Multiple Runs and average reported

Figure 1. Classification accuracy without vocabulary truncation.

percentage accuracy decreased as training data set percentage decreased
Conclusion:
Achieved 30% classification accuracy
Expected reduction in time/effort for bug triager

Who should fix this bug? John Anvik, Lyndon Hiew and Gail C. Murphy
ICSE 2006

Objective: Apply machine learning techniques to address bug triaging problem

Approach (when compared to previous paper):
- More thorough preparation of data
- Use of additional information beyond bug description
- Exploration of more algorithms
- Semi-automated: Triager has to choose the actual developer from the set recommended

Experiment

Characterize bug reports
Assign a label to each bug report
Choose reports to train supervised algorithm

- Normalize Feature Vector out of the words extracted from summary and description (using document length, intra and inter document frequency)
- If a report is resolved as FIXED, it was fixed by whoever submitted the last approved patch. (Firefox)
- If a report is resolved as FIXED, it was fixed by whoever marked the report as resolved. (Eclipse)
- If a report is resolved as DUPLICATE, it was resolved by whoever resolved the report of which this report is a duplicate. (Eclipse and Firefox)
- If a report is resolved as WORKSFORME, it was marked by the triager, and it is unknown which developer would have been assigned the report. The report is thus labeled as unclassifiable. (Firefox)

- 1% of Eclipse and 49% of Firefox removed
- Removed bugs if developer not in project
d e v e l o p e r fixed < 9 bugs reports
Algorithm:
Support Vector Machines, Naïve Bayes and C4.5 Decision Tree

One developer was very dominant
Labeling strategy requires to be fine-tuned
Developer based filtering reduced the number of developers to only 29

Extensions:
• Tried Unsupervised Algorithm (Expectation Maximization) – performed worst than Naïve Bayes
• Incremental Machine learning approach (Naïve Bayes) achieved only 28% accuracy
Objective: Apply graph model based on Markov chains to capture bug tossing history and use that to understand developer network and predict bug triaging

Approach:
- **Bugs gets tossed between developers**
- Create ‘goal’ oriented tossing graph

Figure 4: Eclipse bug report distributions based on the number of assigned developers. Only assigned and verified bugs are considered. About 56% of bugs are assigned to a single developer; 44% of bugs are assigned to more than one developer and have tossing events.

Figure 5: Mozilla bug report distributions based on the number of assigned developers. Only assigned and verified bugs are considered. About 37% of bugs have tossing events.
Table 2: Simple tossing paths.

- A → B → C → D
- A → C → D → E
- C → E → A → F → D

Table 3: Decomposed single steps from the sample tossing paths in Table 2 using two models. The numbers in parenthesis indicate the occurrences of each path.

<table>
<thead>
<tr>
<th>actual paths</th>
<th>goal oriented paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>A → B (1), B → C (1),</td>
<td>A → D (2), B → D (1),</td>
</tr>
<tr>
<td>C → D (2), A → C (1),</td>
<td>C → D (2), A → E (1),</td>
</tr>
<tr>
<td>D → E (1), C → E (1),</td>
<td>C → E (1), D → E (1),</td>
</tr>
<tr>
<td>E → A (1), A → F (1),</td>
<td>E → D (1), F → D (1)</td>
</tr>
<tr>
<td>F → D (1)</td>
<td></td>
</tr>
</tbody>
</table>

Calculate Probability of each Toss
C→D, C→D and C→E : hence C→D is 66% and C→E is 33%
Application of the Model for Understanding Developer Networks

Application of the Model for Bug Triaging

Use goal oriented tossing graph and Weighted Breadth First Search to predict next developers

Figure 12: A partial tossing graph of Eclipse. Goal oriented with 25 minimum support and 15 transaction probability options are used. Nodes indicate developers and connecting lines (edges) represent tossing relationship. The numbers on edges show the tossing probability. The thick edges mean the corresponding edge has high tossing probability and the big nodes indicate they receive many bugs from others. For example, paules receives many bugs from other developers.

Figure 13: The reduced tossing length by predicting next proper developers using the tossing graph model.
Application of the Model for Bug Triaging

Combine goal oriented tossing graph with previous text based approaches

• If previous approaches suggest for a bug the set of developers as {robert.elves, mik.kersten, wuamy, susan_franklin, nitind}
• Goal Oriented Bug Tossing Graph suggest strong tossing relationship between
 • robert_elves \rightarrow steffen.pingel and mik.kersten \rightarrow relves
• Combined approach will predict the set as {robert.elves, steffen.pingel, mik.kersten, relves, wuamy}

Table 4: Bug assignment prediction accuracy in percentages using Naïve Bayes and Bayesian Network with/without tossing graph information. Since the accuracy of first 1 is the same with and without tossing graphs, it is omitted.

<table>
<thead>
<tr>
<th>Program</th>
<th>ML algorithm</th>
<th>Selection</th>
<th>Accuracy (%)</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ML only</td>
<td>ML + tossing graph</td>
</tr>
<tr>
<td>Eclipse</td>
<td>Naïve Bayes</td>
<td>first 2</td>
<td>43.70</td>
<td>44.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>first 3</td>
<td>49.87</td>
<td>53.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>first 4</td>
<td>56.42</td>
<td>59.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>first 5</td>
<td>60.71</td>
<td>63.48</td>
</tr>
<tr>
<td></td>
<td>Bayesian Network</td>
<td>first 2</td>
<td>57.91</td>
<td>58.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>first 3</td>
<td>66.71</td>
<td>68.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>first 4</td>
<td>69.47</td>
<td>71.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>first 5</td>
<td>75.88</td>
<td>77.14</td>
</tr>
<tr>
<td>Mozilla</td>
<td>Naïve Bayes</td>
<td>first 2</td>
<td>33.41</td>
<td>56.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>first 3</td>
<td>45.39</td>
<td>63.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>first 4</td>
<td>52.94</td>
<td>69.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>first 5</td>
<td>59.35</td>
<td>72.92</td>
</tr>
<tr>
<td></td>
<td>Bayesian Network</td>
<td>first 2</td>
<td>40.02</td>
<td>55.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>first 3</td>
<td>50.25</td>
<td>63.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>first 4</td>
<td>55.40</td>
<td>67.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>first 5</td>
<td>59.53</td>
<td>70.82</td>
</tr>
</tbody>
</table>

Objective: Use fuzzy set and cache based modeling of bug fixing expertise of developers to help in bug triaging

Approach (Bugzie):
1. Consider software system to have multiple technical aspects (technical terms)
2. For each technical term associated a fuzzy set of developers who can fix the bugs relevant to that corresponding aspect
3. Fixing correlation of developer towards a technical terms is represented by his/her membership score towards the corresponding fuzzy set
4. For a new bug report, Bugize combines the fuzzy set corresponding to its terms and ranks the developers based on their membership score to find the most capable fixer.

Definition 1 (Capable Fixer toward a Term). For a specific technical term t, a fuzzy set C_t, with an associated membership function $\mu_t()$, represents the set of capable fixers toward t, i.e. the developers who have the bug-fixing expertise relevant to the technical aspect(s) described by t.

Definition 2 (Membership Score toward a Term). The membership score $\mu_t(d)$ is calculated as the correlation between the set D_d of the bug reports that d has fixed, and the set D_t of the bug reports containing term t:

$$\mu_t(d) = \frac{|D_d \cap D_t|}{|D_d \cup D_t|} = \frac{n_{d,t}}{n_t + n_{d} - n_{d,t}}$$
Selection of fixer candidates

- Used locality principle, that people who have fixed recently are more likely to fix a new bug
- Bugzie choose top x% of developers sorted by their latest fixing time as Fixer candidates

Selection of Descriptive Terms

- For each developer (d), Bugzie sorts the terms in the descending order based on correlation scores
- Selected top K terms in the list as significant terms for developer d.
- Such selection of terms across all developers is considered as selection for the system
- For any bug, which does not contain terms from set associated with the system, the bug is ignored by Bugziee

Training the model based on past resolved bug reports and testing the recommendation on the test set
Cache Strategy

- Caching support incremental updates
- Developer cache to store the list of candidate developers
- Terms cache to store the list of terms per developer
- Cache stored in descending values, and new entries are added and least values are removed

Figure 3: Top-1 Accuracy with Various Cache Sizes

Figure 6: Top-1 Accuracy - Various Term Selection
Objective: Approach for automatically predicts the fixing effort, spent on fixing an issue

Approach:
- Use Nearest Neighbor Approach to query database of resolved issues for textual similarity reports.
- To identify similar issues, distance function is used.
- Issue Title and Description are used to compute the similarity between two issue reports.
- Lucene used as text similarity measuring engine.
- To address low similarity score – threshold based Nearest Neighbor Approach has been used
 - at least a minimum similarity
 - at least a minimum set of issues

Experiment: JOBSS Bugs Reports used as subject

- **Average absolute residual.**
 \[r_i = |e_i - p_i| = |Actual\ effort - Estimated\ effort| \]
 \[AAR = \frac{\sum_{i=1}^{n} r_i}{n} \]

Table 1. Prerequisites for issues.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issues reported until 2006-05-05</td>
<td>11,185</td>
</tr>
<tr>
<td>Issues with</td>
<td></td>
</tr>
<tr>
<td>– effort data ((timespent_sec) is available)</td>
<td>786</td>
</tr>
<tr>
<td>– valid effort data ((timespent_sec\leq)lifetime_sec)</td>
<td>676</td>
</tr>
<tr>
<td>– type in (‘Bug’, ‘Feature Request’, ‘Task’, ‘Sub-task’)</td>
<td>666</td>
</tr>
<tr>
<td>– status in (‘Closed’, ‘Resolved’)</td>
<td>601</td>
</tr>
<tr>
<td>– resolution is ‘Done’</td>
<td>575</td>
</tr>
<tr>
<td>– priority is not ‘Trivial’</td>
<td>574</td>
</tr>
<tr>
<td>Issues indexable by Lucene</td>
<td>567</td>
</tr>
</tbody>
</table>
Percentage of predictions within $\pm x\%$.

\[
\text{Pred}(x) = \frac{\left| \{i \mid r_i/e_i < x/100 \} \right|}{n}
\]

Results:

- No threshold, accuracy value is poor. Only 30% lie within a 50%
- With threshold – when similarity is 0, it is naïve approach (accuracy is low)
- Higher similarity, accuracy improves. However number of issues for which prediction is offered decreases (similarity is 0.9, predictions only for 13%)

Objective: Apply text mining and machine learning technique to assign severity to issue reports

Approach:
- Dimension reduction: Apply tokenization, stop word removal, stemming, tf*idf, Infogain over LSI – notes associated with bug report
- Rule Learner: Cohen’s RIPPER rule learner.
 - Rules inferred from most informative tokens in reports with the severity level

Subject: NASA – PITS Ticket System

<table>
<thead>
<tr>
<th></th>
<th>Sev. 1</th>
<th>Sev. 2</th>
<th>Sev. 3</th>
<th>Sev. 4</th>
<th>Sev. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pitsA</td>
<td>0</td>
<td>311</td>
<td>356</td>
<td>208</td>
<td>26</td>
</tr>
<tr>
<td>pitsB</td>
<td>0</td>
<td>23</td>
<td>523</td>
<td>382</td>
<td>59</td>
</tr>
<tr>
<td>pitsC</td>
<td>0</td>
<td>0</td>
<td>132</td>
<td>180</td>
<td>7</td>
</tr>
<tr>
<td>pitsD</td>
<td>0</td>
<td>1</td>
<td>167</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>pitsE</td>
<td>0</td>
<td>24</td>
<td>517</td>
<td>243</td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>severity</th>
<th>precision</th>
<th>recall</th>
<th>f-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.91</td>
<td>0.59</td>
<td>0.71</td>
</tr>
<tr>
<td>2</td>
<td>0.20</td>
<td>0.72</td>
<td>0.31</td>
</tr>
<tr>
<td>3</td>
<td>0.83</td>
<td>0.89</td>
<td>0.86</td>
</tr>
<tr>
<td>4</td>
<td>0.08</td>
<td>1.00</td>
<td>0.14</td>
</tr>
</tbody>
</table>
How to fix this bug?

What files should I investigate to fix this bug?
Traditionally done using code-analysis.
DebugAdvisor: A Recommender System for Debugging. – FSE 2009

Objective: for a new bug report, find me past similar bug report, relevant people and/or related code files

Intuition:
- Bug fixed by People
- Fixing a bug you modify code files
- So once we find similar bugs, we can find relevant people and files transitively

• Contributions
 - A novel algorithm to find similar bugs
 - Use of factor graphs to transitively identify related people and files
DebugAdvisor: A Recommender System for Debugging. – FSE 2009

The customer experiences some deadlocks on a server. The problem is random and may occur from several times a week to once a month. The system looks hung because the global resource ‘BPInitKillMutant’ is help by a thread which tries to close a file for ever. So all the processes having a thread waiting on ‘BPInitKillMutant’ stop working fine. Drivers such as TCP/IP continue to respond normally but it’s impossible to connect to any share.

Problem Impact:
The impact is high since the servers have to be rebooted when the problem occurs. As no one can connect to the server anymore (net use), the production is down. The problem was first escalated as a severity A.

```
0: kd> !thread 82807020
ChildEBBP RetAddr Args to Child
80210000 80c7a028 80c7a068 ntkrnlmp!KiSwapThread+0x1b1
80c7a074 00000000 00000000 ntkrnlmp!KeWaitForSingleObject+0x1b8
80c7a028 00000000 00000000 ntkrnlmp!IopAcquireFileObjectLock+0x88
82a6d7a0 80c7a028 00120089 ntkrnlmp!IoCloseFile+0x79
82a6d7a0 80c7a010 086fda40 ntkrnlmp!ObpDeincrementHandle+0x112
00000324 7fddf01 00000000 ntkrnlmp!NtClose+0x170
00000324 7fddf01 00000000 ntkrnlmp!KiSystemService+0xc9
00000324 80159796 00000000 ntkrnlmp! ZwClose+0xb
000000c9 e1856448 00000000 ntkrnlmp!ObDestroyHandleProcedure+0xd
809de008 801386e4 82a6d926 ntkrnlmp!ExDestroyHandleTable+0x48
00000000 82a6d7a0 7fddf000 ntkrnlmp!ObKillProcess+0x44
00000001 82a6d7a0 82a6d7f0 ntkrnlmp!PspExitProcess+0x84
00000000 10941004 0012fa70 ntkrnlmp!PspExitThread+0x447
ffffffff 00000000 00000000 ntkrnlmp!NtTerminateProcess+0x13c
ffffffff 00000000 00002a60 ntkrnlmp!NtTerminateProcess+0xb
00000000 00000000 00000000 NTDLL!NtTerminateProcess+0xb
```

Bag of words based similarity

- **Q = A,B,C**
- **D1 = A,B**
- **D2 = A,C**
- Q is closer to D1 than D2

Sequence based similarity

- **Q = A,B,C**
- **D1 = A,B**
- **D2 = A,C**
- Q is closer to D1 than D2

Name-value pairs

Figure 3: A bug description

- FAILURE_BUCKET_ID: 0x8E_CLASSPnP\TransferPktComplete+1f5
- SYMBOL_NAME: CLASSPnP\TransferPktComplete+1f5
- MODULE_NAME: CLASSPnP
- IMAGE_NAME: CLASSPnP_SYS
- FAILURE_BUCKET_ID: 0x8E_CLASSPnP\TransferPktComplete+1f5
- BUCKET_ID: 0x8E_CLASSPnP\TransferPktComplete+1f5

Anatomy of a bug report
Consider each bug report as a typed document.
Same for query.
DebugAdvisor: A Recommender System for Debugging. – FSE 2009

Search for similarity based on each type separately and then combine results
DebugAdvisor: A Recommender System for Debugging. – FSE 2009

Experiment:

– Subject: Windows Servicibility Group
– Data source: Bug records, debug records – commands/stack frames
– Measurement criteria: Precision/Recall & User Study

Findings:

– User study: 129 users, 628 queries, 208 responses out of which 78% said was useful
DebugAdvisor: A Recommender System for Debugging. – FSE 2009

Findings:

– For 50 queries, created truth set manually
– Compared precision and recall of proposed approach versus full-text
– Found to improve recall by 14%
Bug Report Summarization
Objective: Summarize bug reports using Supervised Learning Approaches

Approach:
- Manually generated summaries of bug reports, for the training set
- Evaluated multiple classifiers (logistic regression classifiers)
 - Trained on Email Thread (EC)
 - Trained on Email Threads and Meeting (EMC)
- Trained on bug report corpus (BRC)
- Compared classifiers on metrics precision, pyramid precision and f-score
- Eclipse, Gnome, Mozilla and KDE.

Figure 5: Pyramid precision for all classifiers.

Table 2: Evaluation measures.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Pyramid Precision</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRC</td>
<td>.63</td>
<td>.57</td>
<td>.35</td>
<td>.4</td>
</tr>
<tr>
<td>EC</td>
<td>.54</td>
<td>.43</td>
<td>.3</td>
<td>.32</td>
</tr>
<tr>
<td>EMC</td>
<td>.53</td>
<td>.47</td>
<td>.23</td>
<td>.29</td>
</tr>
</tbody>
</table>
Objective: Summarize bug reports using Unsupervised Learning Approaches

Approach:
• Applied 4 unsupervised document summarization techniques (Centroid, MMR, Grasshopper, DivRank)
• How to select sentences?
 • Identify sentences as Question, Code, Investigative or useless
 • Pass the subset of these sentences to the summarizer
• Compared unsupervised with previous supervised techniques
Experiment

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Number of Bugs</th>
<th>Average Comment Count</th>
<th>Average Comment Size</th>
<th>Total Sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS (Eclipse, Gnome, Mozilla and KDE)</td>
<td>36</td>
<td>6.5</td>
<td>9.5</td>
<td>2361</td>
</tr>
<tr>
<td>DB2-Bind (IBM)</td>
<td>19</td>
<td>21</td>
<td>16</td>
<td>6304</td>
</tr>
</tbody>
</table>
Experiment: Comparing with Supervised Techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>Algorithm</th>
<th>Pyramid</th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised</td>
<td>BRC (bug reports)</td>
<td>.63</td>
<td>.57</td>
<td>.35</td>
<td>.4</td>
</tr>
<tr>
<td></td>
<td>EC (Email corpus)</td>
<td>.54</td>
<td>.43</td>
<td>.3</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>EMC (Email threads and meetings)</td>
<td>.53</td>
<td>.47</td>
<td>.23</td>
<td>.29</td>
</tr>
<tr>
<td>Unsupervised</td>
<td>Centroid</td>
<td>.52</td>
<td>.42</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>MMR</td>
<td>.6</td>
<td>.47</td>
<td>.49</td>
<td>.48</td>
</tr>
<tr>
<td></td>
<td>Grasshopper</td>
<td>.6</td>
<td>.49</td>
<td>.51</td>
<td>.5</td>
</tr>
<tr>
<td></td>
<td>DivRank</td>
<td>.5</td>
<td>.45</td>
<td>.46</td>
<td>.46</td>
</tr>
</tbody>
</table>
MINING SUPPORT FORUMS
Objective: Create FAQ candidates from mining mailing lists, Q&A forums, that can be validated/edited by humans

Approach Overview:
• Pre-processing
 – Noise removal
 – Look and feel
• Topic Mining
 – LDA for clusters of related conversations
• FAQ Assembly
 – Select “good” Q&As
 – Relevant topics selection & reordering

Post-processing
• Remove unfocused topics
 • Threshold ratio of #Q&As/#conversations per topic
• FAQ re-ordering within topics
 • Based on harmonic mean of Q&As similarity with topic
Semi-automatically Extracting FAQs to Improve Accessibility of Software Development Knowledge (Henss, Monperrus, Mezini ICSE 2012)

Qualitative Evaluation:
- Open source projects
- FAQs presented to top contributors
- 40 highest scoring Qs shown

Quantitative Evaluation:
- Accept answer
- Modify answer
- Discard the question itself
- PP - preprocessing only
- FAQ – all steps

<table>
<thead>
<tr>
<th>Topic Model (Main List)</th>
<th>Recall</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>FAQ</td>
<td>PP</td>
</tr>
<tr>
<td>Best topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#8 (NHibernate)</td>
<td>1.0</td>
<td>0.9632</td>
</tr>
<tr>
<td>#46 (D-Bus)</td>
<td>0.8564</td>
<td>0.8167</td>
</tr>
<tr>
<td>#31 (Mutt)</td>
<td>0.86</td>
<td>0.8487</td>
</tr>
<tr>
<td>#44 (Hudson)</td>
<td>0.6767</td>
<td>0.7778</td>
</tr>
<tr>
<td>#17 (Log4J)</td>
<td>0.8063</td>
<td>0.4761</td>
</tr>
<tr>
<td>Worst topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20 (Firebug)</td>
<td>0.075</td>
<td>x</td>
</tr>
<tr>
<td>#15 (Hudson)</td>
<td>0.03</td>
<td>x</td>
</tr>
<tr>
<td>#49 (Mediawiki)</td>
<td>0.0183</td>
<td>x</td>
</tr>
<tr>
<td>#36 (Firebug)</td>
<td>0.015</td>
<td>x</td>
</tr>
<tr>
<td>#25 (Greasemonkey)</td>
<td>0.0611</td>
<td>x</td>
</tr>
</tbody>
</table>

Std Deviation
- Average: 0.6071, 0.1829, 0.5711, 0.7634
- Median: 0.7717, 0.1858, 0.6275, 0.8261

Reconstructing 50 Mailing-Lists with LDA. The FAQ assembly techniques improve the precision and filter out unfocused topic.
Objective: Aggregating and organizing problem topics from user requests in support forums

Approach Overview:
- NLP to Extract topics from Subject-Verb-Object pattern
 - Classify as problem/non-problem clause based on attributes
- Aggregate topics by synonyms (WordNet), spellings, hyphenation

<table>
<thead>
<tr>
<th>kind</th>
<th>problem example clauses</th>
<th>verb</th>
<th>animate</th>
<th>copular</th>
<th>past</th>
<th>desire</th>
<th>context</th>
<th>able</th>
<th>not</th>
</tr>
</thead>
<tbody>
<tr>
<td>user inability</td>
<td>I cannot open windows</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>user input</td>
<td>after I open a tab; if I don’t open a tab; after I would open a tab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>problematic behavior</td>
<td>firefox tabs will not close; firefox tabs should close</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>problematic state</td>
<td>Firefox is slow; tabs are stuck.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Frictionary’s clause classification function, via 8 attributes
Mining whining in support forums with frictionary (Andrew J Ko CHI 2012)

Faceted Browsing -- Sort by frequency, prevalence, etc

Qualitative Evaluation:

• Presented to
 - Support lead of support.mozilla.org
 Firefox principal designer

• Subjective questions
 1) Did you discover anything you didn’t know about Firefox users, Firefox use, or a particular Firefox release?
 2) If Frictionary had live data, what role do you think the information would have in your own work or in the larger Mozilla community?

Support lead

Tool was “quite impressive” and that the “it could be useful to gather all of the comments about Firefox from all over the web into one place and the UI for slicing the data is cool.”

Felt that the topic extraction was “good, but not good enough”:
A ”message“ could be an error message, an email message, a message box, an IM... All of which are distinct things to support...

FF Principal Designer

- “visualizing quantitative data coming out of support requests for that feature is really valuable”
- Help prioritize open source efforts...
 “Otherwise people in an open source community will naturally gravitate towards only working on the things that they personally find interesting...”
Thank you
Resources